A160176 Positive numbers y such that y^2 is of the form x^2+(x+617)^2 with integer x.
533, 617, 733, 2465, 3085, 3865, 14257, 17893, 22457, 83077, 104273, 130877, 484205, 607745, 762805, 2822153, 3542197, 4445953, 16448713, 20645437, 25912913, 95870125, 120330425, 151031525, 558772037, 701337113, 880276237
Offset: 1
Keywords
Examples
(-92, a(1)) = (-92, 533) is a solution: (-92)^2+(-92+617)^2 = 8464+275625 = 284089 = 533^2. (A115135(1), a(2)) = (0, 617) is a solution: 0^2+(0+617)^2 = 380689 = 617^2. (A115135(3), a(4)) = (1407, 2465) is a solution: 1407^2+(1407+617)^2 = 1979649+4096576 = 6076225 = 2465^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..2500
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Magma
I:=[533,617,733,2465,3085,3865]; [n le 6 select I[n] else 6*Self(n31) -Self(n-6): n in [1..30]]; // G. C. Greubel, May 04 2018
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1}, {533,617,733,2465,3085,3865}, 50] (* G. C. Greubel, May 04 2018 *)
-
PARI
{forstep(n=-92, 10000000, [3, 1], if(issquare(2*n^2+1234*n+380689, &k), print1(k, ",")))}
-
PARI
x='x+O('x^30); Vec((1-x)*(533 +1150*x +1883*x^2 +1150*x^3 +533*x^4)/(1-6*x^3+x^6)) \\ G. C. Greubel, May 04 2018
Formula
a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=533, a(2)=617, a(3)=733, a(4)=2465, a(5)=3085, a(6)=3865.
G.f.: (1-x)*(533 +1150*x +1883*x^2 +1150*x^3 +533*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 617*A001653(k) for k >= 1.
Comments