cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160198 a(n) = min(A122458(n), A159885(n)).

Original entry on oeis.org

2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 3, 1, 2, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2
Offset: 1

Views

Author

Vladimir Shevelev, May 04 2009

Keywords

Comments

Let f(2n+1) = A000265(3n+2) be defined as in A159885. Then a(n) is the least number k of iterations such that either f^k(2n+1) < 2n+1 or A000120(f^k(2n+1)) < A000120(2n+1).
Using induction, one can prove that the Collatz (3x+1)-conjecture follows from the finiteness of a(n) for every n. - Vladimir Shevelev, May 05 2009

Crossrefs

Programs

  • Maple
    A000265 := proc(n) option remember ; local a; a := n ; while a mod 2 = 0 do a := a/2 ; end do; a; end proc:
    f := proc(n) local m ; m := (n-1)/2 ; A000265(3*m+2) ; end:
    A000120 := proc(n) local d; add(d, d=convert(n,base,2)) ; end proc:
    A159885 := proc(n) local k, twon1; k := 0 ; twon1 := 2*n+1 ; while ( A000120(twon1) > A000120(n) ) do twon1 := f(twon1) ; k := k+1 ; end do; k ; end proc:
    A122458 := proc(n) local tx1,a; a := 0 ; tx1 := 2*n+1 ; while tx1 >= 2*n+1 do if tx1 mod 2 = 0 then tx1 := tx1/2 ; else tx1 := 3*tx1+1 ; a := a+1 ; fi; end do; a ; end proc:
    A160198 := proc(n) min(A159885(n),A122458(n)) ; end: seq(A160198(n),n=1..130) ; # R. J. Mathar, May 15 2009
  • Mathematica
    a[n_] := Module[{u=2n+1, w, k=0}, w = DigitCount[u, 2, 1]; While[u >= 2n+1 && DigitCount[u, 2, 1] >= w, k++; u = (3(u-1)/2+2)/2^IntegerExponent[ (3(u-1)/2+2), 2]]; k];
    Array[a, 105] (* Jean-François Alcover, Apr 16 2020, after Antti Karttunen *)
  • PARI
    f(n) = ((3*((n-1)/2))+2)/A006519((3*((n-1)/2))+2);  \\ Defined for odd n only. Cf. A075677.
    A006519(n) = (1<A160198(n) = { my(u = (n+n+1), w = hammingweight(u), k=0); while((u >= (n+n+1))&&(hammingweight(u) >= w), k++; u = f(u)); (k); }; \\ Antti Karttunen, Sep 22 2018

Extensions

a(1) corrected and sequence extended by R. J. Mathar, May 15 2009