A160203 Positive numbers y such that y^2 is of the form x^2+(x+809)^2 with integer x.
641, 809, 1105, 2741, 4045, 5989, 15805, 23461, 34829, 92089, 136721, 202985, 536729, 796865, 1183081, 3128285, 4644469, 6895501, 18232981, 27069949, 40189925, 106269601, 157775225, 234244049, 619384625, 919581401, 1365274369
Offset: 1
Keywords
Examples
(-200, a(1)) = (-200, 641) is a solution: (-200)^2+(-200+809)^2 = 40000+370881 = 410881 = 641^2. (A123654(1), a(2)) = (0, 809) is a solution: 0^2+(0+809)^2 = 654481 = 809^2. (A123654(3), a(4)) = (1491, 2741) is a solution: 1491^2+(1491+809)^2 = 2223081+5290000 = 7513081 = 2741^2.
Crossrefs
Programs
-
PARI
{forstep(n=-200, 10000000, [3, 1], if(issquare(2*n^2+1618*n+654481, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=641, a(2)=809, a(3)=1105, a(4)=2741, a(5)=4045, a(6)=5989.
G.f.: (1-x)*(641+1450*x+2555*x^2+1450*x^3+641*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 809*A001653(k) for k >= 1.
Comments