cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160206 Positive numbers y such that y^2 is of the form x^2+(x+857)^2 with integer x.

Original entry on oeis.org

697, 857, 1117, 3065, 4285, 6005, 17693, 24853, 34913, 103093, 144833, 203473, 600865, 844145, 1185925, 3502097, 4920037, 6912077, 20411717, 28676077, 40286537, 118968205, 167136425, 234807145, 693397513, 974142473, 1368556333
Offset: 1

Views

Author

Klaus Brockhaus, May 18 2009

Keywords

Comments

(-185, a(1)) and (A129857(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+857)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (907+210*sqrt(2))/857 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1208787+678878*sqrt(2))/857^2 for n mod 3 = 1.

Examples

			(-185, a(1)) = (-185, 697) is a solution: (-185)^2+(-185+857)^2 = 34225+451584 = 485809 = 697^2.
(A129857(1), a(2)) = (0, 857) is a solution: 0^2+(0+857)^2 = 734449 = 857^2.
(A129857(3), a(4)) = (1696, 3065) is a solution: 1696^2+(1696+857)^2 = 2876416+6517809 = 9394225 = 3065^2.
		

Crossrefs

Cf. A129857, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160207 (decimal expansion of (907+210*sqrt(2))/857), A160208 (decimal expansion of (1208787+678878*sqrt(2))/857^2).

Programs

  • Magma
    I:=[697,857,1117,3065,4285,6005]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..40]]; // G. C. Greubel, May 14 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {697,857,1117,3065,4285,6005}, 50] (* G. C. Greubel, May 14 2018 *)
  • PARI
    {forstep(n=-188, 10000000, [3, 1], if(issquare(2*n^2 +1714*n +734449, &k), print1(k, ",")))}
    
  • PARI
    x='x+O('x^30); Vec((1-x)*(697+1554*x+2671*x^2+1554*x^3 +697*x^4 )/(1-6*x^3+x^6)) \\ G. C. Greubel, May 14 2018
    

Formula

a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=697, a(2)=857, a(3)=1117, a(4)=3065, a(5)=4285, a(6)=6005.
G.f.: (1-x)*(697+1554*x+2671*x^2+1554*x^3+697*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 857*A001653(k) for k >= 1.