A160206 Positive numbers y such that y^2 is of the form x^2+(x+857)^2 with integer x.
697, 857, 1117, 3065, 4285, 6005, 17693, 24853, 34913, 103093, 144833, 203473, 600865, 844145, 1185925, 3502097, 4920037, 6912077, 20411717, 28676077, 40286537, 118968205, 167136425, 234807145, 693397513, 974142473, 1368556333
Offset: 1
Keywords
Examples
(-185, a(1)) = (-185, 697) is a solution: (-185)^2+(-185+857)^2 = 34225+451584 = 485809 = 697^2. (A129857(1), a(2)) = (0, 857) is a solution: 0^2+(0+857)^2 = 734449 = 857^2. (A129857(3), a(4)) = (1696, 3065) is a solution: 1696^2+(1696+857)^2 = 2876416+6517809 = 9394225 = 3065^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 6, 0, 0, -1).
Crossrefs
Programs
-
Magma
I:=[697,857,1117,3065,4285,6005]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..40]]; // G. C. Greubel, May 14 2018
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1}, {697,857,1117,3065,4285,6005}, 50] (* G. C. Greubel, May 14 2018 *)
-
PARI
{forstep(n=-188, 10000000, [3, 1], if(issquare(2*n^2 +1714*n +734449, &k), print1(k, ",")))}
-
PARI
x='x+O('x^30); Vec((1-x)*(697+1554*x+2671*x^2+1554*x^3 +697*x^4 )/(1-6*x^3+x^6)) \\ G. C. Greubel, May 14 2018
Formula
a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=697, a(2)=857, a(3)=1117, a(4)=3065, a(5)=4285, a(6)=6005.
G.f.: (1-x)*(697+1554*x+2671*x^2+1554*x^3+697*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 857*A001653(k) for k >= 1.
Comments