A160212 Positive numbers y such that y^2 is of the form x^2+(x+953)^2 with integer x.
845, 953, 1093, 3977, 4765, 5713, 23017, 27637, 33185, 134125, 161057, 193397, 781733, 938705, 1127197, 4556273, 5471173, 6569785, 26555905, 31888333, 38291513, 154779157, 185858825, 223179293, 902119037, 1083264617, 1300784245
Offset: 1
Keywords
Examples
(-116, a(1)) = (-116, 845) is a solution: (-116)^2+(-116+953)^2 = 13456+700569 = 714025 = 845^2. (A129975(1), a(2)) = (0, 953) is a solution: 0^2+(0+953)^2 = 908209 = 953^2. (A129975(3), a(4)) = (2295, 3977) is a solution: 2295^2+(2295+953)^2 = 5267025+10549504 = 15816529 = 3977^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1},{845,953,1093,3977,4765,5713},30] (* Harvey P. Dale, Feb 18 2024 *)
-
PARI
{forstep(n=-116, 10000000, [3, 1], if(issquare(2*n^2+1906*n+908209, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=845, a(2)=953, a(3)=1093, a(4)=3977, a(5)=4765, a(6)=5713.
G.f.: (1-x)*(845+1798*x+2891*x^2+1798*x^3+845*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 953*A001653(k) for k >= 1.
Comments