cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160219 Numerator of Hermite(n, 17/28).

Original entry on oeis.org

1, 17, -103, -15079, -135215, 21345217, 627890089, -39529818871, -2394937325023, 83251577454065, 9864615699400249, -158647716730130567, -45233234080226093327, -22686119865309399391, 230122896835121911804745, 4036590672017890484538473
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 17/14, -103/196, -15079/2744, -135215/38416
		

Crossrefs

Cf. A001023 (denominators)

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(17/14)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
  • Mathematica
    Numerator[Table[HermiteH[n, 17/28], {n, 0, 50}]] (* G. C. Greubel, Sep 26 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 17/28)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(17*x - 196*x^2))) \\ G. C. Greubel, Sep 26 2018
    

Formula

From G. C. Greubel, Sep 26 2018: (Start)
a(n) = 14^n * Hermite(n, 17/28).
E.g.f.: exp(17*x - 196*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(17/14)^(n-2*k)/(k!*(n-2*k)!)). (End)