A160226 Numerator of Hermite(n, 3/29).
1, 6, -1646, -30060, 8125356, 250995816, -66828269064, -2934019389456, 769231923622800, 44095556446256736, -11380059521124405984, -809967616552784735424, 205694055560527051103424, 17582550705864569406418560, -4392210914651297082988957824
Offset: 0
Examples
Numerators of 1, 6/29, -1646/841, -30060/24389, 8125356/707281
Links
- G. C. Greubel, Table of n, a(n) for n = 0..371
Crossrefs
Cf. A009973 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(6/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
-
Mathematica
HermiteH[Range[0,20],3/29]//Numerator (* Harvey P. Dale, Mar 31 2018 *) Table[29^n*HermiteH[n, 3/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
-
PARI
a(n)=numerator(polhermite(n, 3/29)) \\ Charles R Greathouse IV, Jan 29 2016
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(6*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
Formula
From G. C. Greubel, Sep 26 2018: (Start)
a(n) = 29^n * Hermite(n, 3/29).
E.g.f.: exp(6*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/29)^(n-2*k)/(k!*(n-2*k)!)). (End)