cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160235 The maximal coefficient of (1+x)*(1+x^4)*(1+x^9)*...*(1+x^(n^2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 5, 6, 9, 14, 21, 32, 54, 87, 144, 230, 383, 671, 1158, 1981, 3408, 6246, 10925, 19463, 34624, 63941, 114954, 208429, 380130, 707194, 1298600, 2379842, 4398644, 8253618, 15303057, 28453809, 53091455, 100061278, 187446097
Offset: 0

Views

Author

Theodore Kolokolnikov, May 05 2009

Keywords

Crossrefs

Programs

  • Maple
    for N from 1 to 40 do
    p := expand(product(1+x^(n^2), n=1..N)):
    L:=convert(PolynomialTools[CoefficientVector](p, x), list):
    mmax := max(op(map(abs, L)));
    lprint(mmax):
    end:
  • Mathematica
    p = 1; Table[p = Expand[p*(1 + x^(n^2))]; Max[CoefficientList[p, x]], {n, 1, 50}] (* Vaclav Kotesovec, May 04 2018 *)
    nmax = 100; poly = ConstantArray[0, nmax*(nmax+1)*(2*nmax+1)/6 + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += poly[[j - k^2 + 1]], {j, k*(k+1)*(2*k+1)/6, k^2, -1}]; Print[k, " ", Max[poly]], {k, 2, nmax}]; (* Vaclav Kotesovec, Dec 30 2022 *)

Formula

An asymptotic formula is a(n) ~ sqrt(10/Pi) * n^(-5/2) * 2^n. See for example the reference by Finch.
More precise asymptotics: a(n) ~ sqrt(10/Pi) * 2^n / n^(5/2) * (1 - 35/(18*n) + ...). - Vaclav Kotesovec, Dec 30 2022

Extensions

a(0)=1 prepended by Seiichi Manyama, Dec 26 2022