A160252 Numerator of Hermite(n, 9/29).
1, 18, -1358, -84996, 5322540, 667658808, -32744702856, -7327417341744, 253642619275152, 103163294897460000, -1982702662432970976, -1770895268099070677568, 4807849834551556801728, 35830291388333570578463616, 539816800507699929385760640
Offset: 0
Examples
Numerators of 1, 18/29, -1358/841, -84996/24389, 5322540/707281,...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..371
Crossrefs
Cf. A009973 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(18/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
-
Mathematica
Table[29^n*HermiteH[n, 9/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *) HermiteH[Range[0,20],9/29]//Numerator (* Harvey P. Dale, Feb 17 2021 *)
-
PARI
a(n)=numerator(polhermite(n, 9/29)) \\ Charles R Greathouse IV, Jan 29 2016
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(18*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
Formula
From G. C. Greubel, Sep 26 2018: (Start)
a(n) = 29^n * Hermite(n, 9/29).
E.g.f.: exp(18*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(18/29)^(n-2*k)/(k!*(n-2*k)!)). (End)