cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160255 The sum of all the entries in an n X n Cayley table for multiplication in Z_n.

Original entry on oeis.org

0, 1, 6, 16, 40, 63, 126, 176, 270, 365, 550, 624, 936, 1099, 1350, 1664, 2176, 2349, 3078, 3280, 3948, 4631, 5566, 5712, 7000, 7813, 8748, 9520, 11368, 11475, 13950, 14592, 16236, 17969, 19390, 20304, 23976, 25327, 27222, 28400, 32800, 32949, 37926, 38896
Offset: 1

Views

Author

David Byrne (david.roggeveen.byrne(AT)gmail.com), May 06 2009

Keywords

Comments

Thanks to David Miller.

Examples

			For n=4:
   | 0 1 2 3
  -+--------
  0| 0 0 0 0
  1| 0 1 2 3
  2| 0 2 0 2
  3| 0 3 2 1
Sum becomes 6+4+6 = 16.
		

Crossrefs

Programs

Formula

a(p) = (p-1)*(p^2-p)/2, for p prime.
a(n) = (n/2)*Sum_{i=1..n-1} gcd(n,i)*(n/gcd(n,i)-1). [Edited by Richard L. Ollerton, May 06 2021]
a(n) = (n^2/2)*Sum_{d|n} phi(d)*(d-1)/d, where phi = A000010. - Richard L. Ollerton, May 06 2021
From Ridouane Oudra, Aug 24 2022: (Start)
a(n) = Sum_{i=1..n} Sum_{j=1..n} (i*j mod n);
a(n) = n^3/2 - (n/2)*Sum_{i=1..n} gcd(n,i);
a(n) = n^3/2 - (n/2)*Sum_{d|n} d*tau(d)*moebius(n/d);
a(n) = (A000578(n) - n*A018804(n))/2. (End)

Extensions

More terms from Carl Najafi, Sep 29 2011