A160291 Numerator of Hermite(n, 1/30).
1, 1, -449, -1349, 604801, 3033001, -1357769249, -9546871949, 4267426262401, 38636165278801, -17244440197445249, -191107183952049749, 85168871793401932801, 1117147665134470577401, -497120752326266836308449, -7535151042673431473934749, 3348029927159627713608096001
Offset: 0
Examples
Numerators of 1, 1/15, -449/225, -1349/3375, 604801/50625, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..412
Crossrefs
Cf. A001024 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(1/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 03 2018
-
Mathematica
Table[15^n*HermiteH[n, 1/30], {n, 0, 30}] (* G. C. Greubel, Oct 03 2018 *)
-
PARI
a(n)=numerator(polhermite(n, 1/30)) \\ Charles R Greathouse IV, Jan 29 2016
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(x - 225*x^2))) \\ G. C. Greubel, Oct 03 2018
Formula
From G. C. Greubel, Oct 03 2018: (Start)
a(n) = 15^n * Hermite(n, 1/30).
E.g.f.: exp(x - 225*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/15)^(n-2*k)/(k!*(n-2*k)!)). (End)