cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160310 Numerator of Hermite(n, 12/31).

Original entry on oeis.org

1, 24, -1346, -124560, 4771596, 1072135584, -20123783544, -12846838359744, -37578736832880, 196631096935434624, 5369183316185589216, -3650389283510599332096, -201124616475050111174976, 79365587639487260327262720, 6930073770593296325672255616
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 24/31, -1346/961, -124560/29791, 4771596/923521, ...
		

Crossrefs

Cf. A009975 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(24/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
  • Mathematica
    Numerator/@HermiteH[Range[0,20],12/31] (* Harvey P. Dale, Jul 19 2011 *)
    Table[31^n*HermiteH[n, 12/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 12/31)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(24*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
    

Formula

From G. C. Greubel, Oct 04 2018: (Start)
a(n) = 31^n * Hermite(n, 12/31).
a(n+2) = 24*a(n+1) - 1922*(n+1)*a(n)
E.g.f.: exp(24*x - 961*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(24/31)^(n-2*k)/(k!*(n-2*k)!)). (End)