cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160332 Decimal expansion of the one real root of x^3 - 8x - 10.

Original entry on oeis.org

3, 3, 1, 8, 6, 2, 8, 2, 1, 7, 7, 5, 0, 1, 8, 5, 6, 5, 9, 1, 0, 9, 6, 8, 0, 1, 5, 3, 3, 1, 8, 0, 2, 2, 4, 6, 7, 7, 2, 1, 9, 1, 9, 8, 0, 8, 8, 3, 6, 9, 0, 0, 2, 6, 0, 2, 2, 8, 0, 9, 1, 9, 9, 5, 8, 4, 0, 1, 9, 5, 8, 9, 7, 4, 5, 7, 3, 2, 1, 8, 7, 4, 3, 6, 6, 5, 3, 4, 5, 9, 1, 0, 7, 4, 8, 7, 1, 5, 4, 0, 0, 4, 5, 5, 8
Offset: 1

Views

Author

Harry J. Smith, May 11 2009

Keywords

Examples

			3.31862821775018565910968015331802246772191980883690026022809199584019...
		

Crossrefs

Cf. A002937 (continued fraction).

Programs

  • Mathematica
    RealDigits[x /. FindRoot[x^3 - 8*x - 10, {x, 3}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Jun 11 2023 *)
  • PARI
    default(realprecision, 20080); x=NULL; p=x^3 - 8*x - 10; rs=polroots(p); r=real(rs[1]); for (n=1, 20000, d=floor(r); r=(r-d)*10; write("b160332.txt", n, " ", d));
    
  • PARI
    sqrtn(5+sqrt(163/27), 3) + sqrtn(5-sqrt(163/27), 3); \\ Michel Marcus, Sep 06 2013
    
  • PARI
    polrootsreal(x^3-8*x-10)[1] \\ Charles R Greathouse IV, Apr 14 2014

Formula

Equals (5+sqrt(163/27))^(1/3) + (5-sqrt(163/27))^(1/3).