cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160364 Let f be defined as in A159885 and f^k be the k-th iteration of f. Then a(n) is the least k for which either {A000120(f^k(2n+1)) < A000120(2n+1)}&{A006694((f^k(2n+1)-1)/2)<=A006694(n)} or {A000120(f^k(2n+1))<=A000120(2n+1)}&{A006694((f^k(2n+1)-1)/2) < A006694(n)}.

Original entry on oeis.org

2, 1, 1, 5, 3, 1, 1, 2, 5, 1, 2, 1, 1, 1, 1, 5, 2, 5, 3, 33, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 7, 1, 5, 10, 1, 1, 2, 5, 5, 1, 1
Offset: 1

Views

Author

Vladimir Shevelev, May 11 2009

Keywords

Comments

Using induction, one can prove that the Collatz (3x+1)-conjecture follows from the finiteness of a(n) for every n.

Examples

			Beginning with n=1, we have f(2n+1)=f(3)=5. Here A000120(3)=A000120(5)=2 and A006694((3-1)/2)= A006694((5-1)/2)=1. None of values did not become less than. Therefore a(1)>1. Since f(5)=1 and A000120(1)=1 and A006694(0)=0, then a(2)=2.
		

Crossrefs