A160449 Array read by antidiagonals: T(n,k) is the number of isomorphism classes of n-fold coverings of a connected graph with Betti number k (1 <= n, 0 <= k).
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 5, 11, 8, 1, 1, 7, 43, 49, 16, 1, 1, 11, 161, 681, 251, 32, 1, 1, 15, 901, 14721, 14491, 1393, 64, 1, 1, 22, 5579, 524137, 1730861, 336465, 8051, 128, 1, 1, 30, 43206, 25471105, 373486525, 207388305, 7997683, 47449, 256, 1
Offset: 0
Examples
The array begins: k=0 k=1 k=2 k=3 k=4 k=5 n=1 1 1 1 1 1 1 n=2 1 2 4 8 16 32 n=3 1 3 11 49 251 1393 n=4 1 5 43 681 14491 336465 n=5 1 7 161 14721 1730861 207388305
Links
- Álvar Ibeas, Table of n, a(n) for n = 0..1829
- Michael W. Hero and Jeb F. Willenbring, Stable Hilbert series as related to the measurement of quantum entanglement, Discrete Mathematics, 309 (2009), 6508-6514. See Table 3.
- J. H. Kwak and J. Lee, Isomorphism classes of graph bundles. Can. J. Math., 42(4), 1990, pp. 747-761.
- J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See Table 2.
Crossrefs
Programs
-
Sage
def A160449(n, k): return sum(p.aut()**(k - 1) for p in Partitions(n)) # Álvar Ibeas, Mar 25 2015
Extensions
Name clarified and more terms added by Álvar Ibeas, Mar 25 2015
Comments