A160468 Triangle of polynomial coefficients related to the o.g.f.s of the RES1 polynomials.
1, 1, 2, 1, 17, 26, 2, 62, 192, 60, 1, 1382, 7192, 5097, 502, 2, 21844, 171511, 217186, 55196, 2036, 2, 929569, 10262046, 20376780, 9893440, 1089330, 16356, 4, 6404582, 94582204, 271154544, 215114420, 48673180, 2567568, 16376, 1
Offset: 1
Examples
The first few rows are: [1] [1] [2, 1] [17, 26, 2] [62, 192, 60, 1] The first few polynomials RE(z,m) are: RE(z,-1) = 1 RE(z,-3) = 1 RE(z,-5) = 2+z RE(z,-7) = 17+26*z+2*z^2 The first few GFRES1(z,m) are: GFRES1(z,-1) = -(1/1)*(1)/(2*(z-1)^1) GFRES1(z,-3) = -(1/2)*(1)/(2*(z-1)^2) GFRES1(z,-5) = -(1/2)*(2+z)/(2*(z-1)^3) GFRES1(z,-7) = -(1/4)*(17+26*z+2*z^2)/(2*(z-1)^4)
Links
- Grzegorz Rzadkowski, M Urlinska, A Generalization of the Eulerian Numbers, arXiv preprint arXiv:1612.06635, 2016
Crossrefs
Programs
-
Maple
nmax := 8; mmax := nmax: T(0, x) := 1: for i from 1 to nmax do dgr := degree(T(i-1, x), x): for na from 0 to dgr do c(na) := coeff(T(i-1, x), x, na) od: T(i-1, x+1) := 0: for nb from 0 to dgr do T(i-1, x+1) := T(i-1, x+1) + c(nb)*(x+1)^nb od: for nc from 0 to dgr do ECGP(i-1, nc+1) := coeff(T(i-1, x), x, nc) od: T(i, x) := expand((2*x+1)*(x+1)*T(i-1, x+1) - 2*x^2*T(i-1, x)) od: dgr := degree (T(nmax, x), x): kmax := nmax: for k from 1 to kmax do p := k: for m from 1 to k do E(m, k) := sum((-1)^(m-q)*(q^k)*binomial(k+1, m-q), q=1..m) od: fx(p) := (-1)^(p+1) * (sum(E(r, k)*z^(k-r), r=1..k))/(z-1)^(p+1): GF(-(2*p+1)) := sort(simplify(((-1)^p* 1/2^(p+1)) * sum(ECGP(k-1, k-s)*fx(k-s), s=0..k-1)), ascending): NUMGF(-(2*p+1)) := -numer(GF(-(2*p+1))): for n from 1 to mmax+1 do A(k+1, n) := coeff(NUMGF(-(2*p+1)), z, n-1) od: od: for m from 2 to mmax do A(1, m) := 0 od: A(1, 1) := 1: FT(1) := 1: for n from 1 to nmax do for m from 1 to n do FT((n)*(n-1)/2+m+1) := A(n+1, m) end do end do: a := n-> FT(n): seq(a(n), n = 1..(nmax+1)*(nmax)/2+1);
-
Mathematica
T[ n_, k_] := Coefficient[a[2 n]/2^IntegerExponent[(2 n)!, 2], x, n + k]; a[0] = a[1] = 1; a[ m_] := a[m] = With[{n = m - 1}, x Sum[ a[k] a[n - k] Binomial[n, k], {k, 0, n}]]; Join[{1}, Flatten@Table[T[n, k], {n, 1, 8}, {k, 0, n - 1}]] (* Michael Somos, Apr 22 2020 *)
Extensions
Edited by Johannes W. Meijer, Sep 23 2012
Comments