A160511 Number of weighings needed to find lighter coins among n coins.
1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19
Offset: 1
Examples
For n=1, compare the given coin A with a known heavy coin X. If A < X, then A is a light coin; if A=X, then A is a heavy coin; the outcome A > X is not possible. Since one weighing was needed, we have a(1)=1. For n=3, to sort coins A,B,C, one optimal algorithm is: First compare A:B. If A < B, we know that A is light and B is heavy and can find out about C by comparing, e.g., B:C in a second weighing. The case A > B is symmetric. If, however, A=B, compare A:C. If A < C, we know that A,B are light and C is heavy and vice versa for A > C. The worst case is A=C, which requires a third weighing, e.g., A:X, against a known heavy coin X. Since no algorithm exists that never uses more than 2 weighings, we have a(3) = 3.
Links
- An-Ping Li, A note on the counterfeit coins problem, arXiv:0902.0841v8 [math.CO]
Crossrefs
Cf. A156301. - Jonathan Vos Post, May 18 2009
Comments