cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160525 Coefficients in the expansion of C/B^2, in Watson's notation of page 118.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 65, 109, 183, 295, 471, 732, 1129, 1705, 2554, 3769, 5517, 7979, 11458, 16289, 23007, 32227, 44869, 62028, 85284, 116530, 158432, 214228, 288348, 386224, 515156, 684109, 904963, 1192353, 1565383, 2047642, 2669591, 3468797, 4493351, 5802533
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 109*x^7 + ...
G.f. = q^5 + 2*q^29 + 5*q^53 + 10*q^77 + 20*q^101 + 36*q^125 + 65*q^149 + 109*q^173 + ...
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^2: A000041 (k=1), A015128 (k=2), A278690 (k=3), A160461 (k=5), this sequence (k=7).

Programs

  • Maple
    M1:=1200:
    fm:=mul(1-x^n,n=1..M1):
    A:=x^(1/7)*subs(x=x^(24/7),fm):
    B:=x*subs(x=x^24,fm):
    C:=x^7*subs(x=x^168,fm):
    t1:=C/B^2;
    t2:=series(t1,x,M1);
    t3:=subs(x=y^(1/24),t2/x^5);
    t4:=series(t3,y,M1/24);
    t5:=seriestolist(t4); # A160525
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 13 2017 *)

Formula

See Maple code for formula.
G.f.: Product_{n>=1} (1 - x^(7*n))/(1 - x^n)^2. - Seiichi Manyama, Nov 06 2016
a(n) ~ sqrt(13/3) * exp(sqrt(26*n/21)*Pi) / (28*n). - Vaclav Kotesovec, Apr 13 2017