cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A160527 Coefficients in the expansion of C^3/B^4, in Watson's notation of page 118.

Original entry on oeis.org

1, 4, 14, 40, 105, 252, 574, 1237, 2568, 5138, 9988, 18893, 34937, 63238, 112370, 196244, 337477, 572024, 956956, 1581321, 2583637, 4176495, 6684820, 10599939, 16661401, 25972485, 40171474, 61672695, 94017765, 142368024, 214211760, 320350725, 476299978
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Examples

			G.f. = 1 + 4*x + 14*x^2 + 40*x^3 + 105*x^4 + 252*x^5 + 574*x^6 + ...
G.f. = q^17 + 4*q^41 + 14*q^65 + 40*q^89 + 105*q^113 + 252*q^137 + 574*q^161 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))^3 /(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)

Formula

See Maple code in A160525 for formula.
G.f.: Product_{n >= 1} (1 - x^(7*n))^3/(1 - x^n)^4. - Seiichi Manyama, Nov 06 2016
a(n) ~ exp(Pi*sqrt(50*n/21)) * 5 / (196*sqrt(3)*n). - Vaclav Kotesovec, Nov 10 2017

A160528 Coefficients in the expansion of C^4/B^5, in Watson's notation of page 118.

Original entry on oeis.org

1, 5, 20, 65, 190, 506, 1265, 2986, 6745, 14645, 30767, 62745, 124706, 242110, 460337, 858673, 1574140, 2839862, 5048435, 8852562, 15327290, 26224173, 44372688, 74301095, 123200079, 202394897, 329596348, 532299955, 852914900, 1356426196, 2141819621
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Examples

			G.f. = 1 + 5*x + 20*x^2 + 65*x^3 + 190*x^4 + 506*x^5 + 1265*x^6 + ...
G.f. = q^23 + 5*q^47 + 20*q^71 + 65*q^95 + 190*q^119 + 506*q^143 + 1265*q^167 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))^4 /(1 - x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)

Formula

See Maple code in A160525 for formula.
G.f.: Product_{n>=1} (1 - x^(7*n))^4/(1 - x^n)^5. - Seiichi Manyama, Nov 06 2016
a(n) ~ exp(Pi*sqrt(62*n/21)) * sqrt(31) / (4*sqrt(3) * 7^(5/2) * n). - Vaclav Kotesovec, Nov 10 2017

A160539 Coefficients in the expansion of C/B^7, in Watson's notation of page 118.

Original entry on oeis.org

1, 7, 35, 140, 490, 1547, 4522, 12404, 32298, 80430, 192759, 446656, 1004598, 2199953, 4703104, 9836820, 20167210, 40593651, 80335164, 156503088, 300457906, 568992893, 1063818868, 1965178600, 3589328246, 6485976525, 11602141453, 20555544212, 36087448852
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2009

Keywords

Comments

Watson's C and B are (essentially) defined as C = prod(n>=1, 1-q^(7*n)) and B = prod(n>=1, 1-q^n). - Joerg Arndt, Jul 30 2011
From Petros Hadjicostas, Sep 23 2019: (Start)
In Section 5 of his paper, p. 118, Watson defines A = x^(1/7)*f(-x^(24/7)), B = x*f(-x^24), and C = x^7*f(-x^168), where f(-x^2) = Product_{n >= 1} (1 - x^(2*n)). Note that in different sections of the paper, the definitions of A, B, and C change.
Letting q = x^24, we get B = q^(1/24) * Product_{n >= 1} (1 - q^n), C = q^(7/24) * Product_{n >= 1} (1 - q^(7*n)), and C/B^7 = Product_{n >= 1} (1 - q^(7*n))/(1 -q^n)^7. This is the reason Joerg Arndt above omits the factor q^(1/24) in the definition of B and the factor q^(7/24) in the definition of C.
(End)

Examples

			1 + 7*x^24 + 35*x^48 + 140*x^72 + 490*x^96 + 1547*x^120 + 4522*x^144 + ... = 1 + 7*q + 35*q^2 + 140*q^3 + 490*q^4 + 1547*q^5 + ... with q = x^24.
		

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))/(1 - x^k)^7, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
  • PARI
    N=66; x='x+O('x^N);
    gf=eta(x^7)/eta(x)^7;
    Vec(gf) /* Joerg Arndt, Jul 30 2011 */

Formula

G.f.: E7/E1^7 where E1 = P(q), E7 = P(q^7), and P(q) = prod(n>=1, 1-q^n). - Joerg Arndt, Jul 30 2011
G.f.: exp(sum(n>=1, (sigma(7*n)-sigma(n))*x^n/n ) ). - Joerg Arndt, Jul 30 2011
See also Maple code in A160525 for formula.
a(n) ~ 2^(5/4) * exp(4*Pi*sqrt(2*n/7)) / (7^(9/4) * n^(9/4)). - Vaclav Kotesovec, Nov 10 2016

A160526 Coefficients in the expansion of C^2/B^3, in Watson's notation of page 118.

Original entry on oeis.org

1, 3, 9, 22, 51, 108, 221, 427, 804, 1461, 2596, 4497, 7652, 12767, 20984, 33958, 54255, 85580, 133520, 206066, 315010, 477083, 716494, 1067316, 1578102, 2316569, 3377965, 4894045, 7047970, 10091120, 14369439, 20354090, 28687663, 40239129, 56183879
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Examples

			G.f. = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 108*x^5 + 221*x^6 + ...
G.f. = q^11 + 3*q^35 + 9*q^59 + 22*q^83 + 51*q^107 + 108*q^131 + 221*q^155 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))^2 /(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)

Formula

See Maple code in A160525 for formula.
G.f.: Product_{n>=1} (1 - x^(7*n))^2/(1 - x^n)^3. - Seiichi Manyama, Nov 06 2016
a(n) ~ exp(Pi*sqrt(38*n/21)) * sqrt(19) / (4*sqrt(3) * 7^(3/2) * n). - Vaclav Kotesovec, Nov 10 2017

A160534 Coefficients in the expansion of B^7/C, in Watson's notation of page 118.

Original entry on oeis.org

1, -7, 14, 7, -49, 21, 35, 42, -56, -119, 105, -70, 147, 147, -133, -168, -231, 252, -154, 315, 441, 7, -644, -574, 595, -679, 735, 574, 196, -406, -840, 840, -1470, 854, 1260, 21, -1617, -966, 1575, -1176, 1785, 1470, 35, -1974, -2058, 1533, -1988, 1932, 2387, -301, -2170, -2016, 3087, -2422
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2009

Keywords

Examples

			1-7*x^24+14*x^48+7*x^72-49*x^96+21*x^120+35*x^144+42*x^168-...
		

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(irem(d, 7)=0, -6, -7), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Jan 07 2017
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[DivisorSum[j, #*If[Mod[#, 7]==0, -6, -7]&]* a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Mar 13 2017, after Alois P. Heinz *)

Formula

See Maple code in A160525 for formula.
Euler transform of period 7 sequence [ -7, -7, -7, -7, -7, -7, -6, ...]. - Alois P. Heinz, Jan 07 2017

A160533 Coefficients in the expansion of C^5/B^6, in Watson's notation of page 118.

Original entry on oeis.org

1, 6, 27, 98, 315, 918, 2492, 6367, 15495, 36145, 81326, 177219, 375461, 775544, 1565870, 3096615, 6008917, 11458720, 21502964, 39754385, 72485518, 130464603, 231989748, 407847488, 709365160, 1221364655, 2082872680, 3519963776, 5897536697, 9800358525
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2009

Keywords

Examples

			G.f. = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2492*x^6 + ...
G.f. = q^29 + 6*q^53 + 27*q^77 + 98*q^101 + 315*q^125 + 918*q^149 + 2492*q^173 + ...
		

Crossrefs

Programs

  • Mathematica
    nn = 29; CoefficientList[Series[Product[(1 - x^(7 n))^5/(1 - x^n)^6, {n, nn}], {x, 0, nn}], x] (* Michael De Vlieger, Nov 06 2016 *)

Formula

See Maple code in A160525 for formula.
G.f.: Product_{n>=1} (1 - x^(7*n))^5/(1 - x^n)^6. - Seiichi Manyama, Nov 06 2016
a(n) ~ exp(Pi*sqrt(74*n/21)) * sqrt(37) / (1372*sqrt(3)*n). - Vaclav Kotesovec, Nov 10 2017
Showing 1-6 of 6 results.