A160525 Coefficients in the expansion of C/B^2, in Watson's notation of page 118.
1, 2, 5, 10, 20, 36, 65, 109, 183, 295, 471, 732, 1129, 1705, 2554, 3769, 5517, 7979, 11458, 16289, 23007, 32227, 44869, 62028, 85284, 116530, 158432, 214228, 288348, 386224, 515156, 684109, 904963, 1192353, 1565383, 2047642, 2669591, 3468797, 4493351, 5802533
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 109*x^7 + ... G.f. = q^5 + 2*q^29 + 5*q^53 + 10*q^77 + 20*q^101 + 36*q^125 + 65*q^149 + 109*q^173 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128.
Crossrefs
Programs
-
Maple
M1:=1200: fm:=mul(1-x^n,n=1..M1): A:=x^(1/7)*subs(x=x^(24/7),fm): B:=x*subs(x=x^24,fm): C:=x^7*subs(x=x^168,fm): t1:=C/B^2; t2:=series(t1,x,M1); t3:=subs(x=y^(1/24),t2/x^5); t4:=series(t3,y,M1/24); t5:=seriestolist(t4); # A160525
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 13 2017 *)
Formula
See Maple code for formula.
G.f.: Product_{n>=1} (1 - x^(7*n))/(1 - x^n)^2. - Seiichi Manyama, Nov 06 2016
a(n) ~ sqrt(13/3) * exp(sqrt(26*n/21)*Pi) / (28*n). - Vaclav Kotesovec, Apr 13 2017