cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160563 Table of the number of (n,k)-Riordan complexes, read by rows.

Original entry on oeis.org

1, 1, 1, 9, 10, 1, 225, 259, 35, 1, 11025, 12916, 1974, 84, 1, 893025, 1057221, 172810, 8778, 165, 1, 108056025, 128816766, 21967231, 1234948, 28743, 286, 1, 18261468225, 21878089479, 3841278805, 230673443, 6092515, 77077, 455, 1, 4108830350625, 4940831601000
Offset: 0

Views

Author

Jonathan Vos Post, May 19 2009

Keywords

Comments

From Table 4, right-hand side, of Gelineau and Zeng.
Essentially a row-reversal of A008956. - R. J. Mathar, May 20 2009

Examples

			Triangle starts:
  [0]         1;
  [1]         1,          1;
  [2]         9,         10,        1;
  [3]       225,        259,       35,        1;
  [4]     11025,      12916,     1974,       84,     1;
  [5]    893025,    1057221,   172810,     8778,   165,    1;
  [6] 108056025,  128816766, 21967231,  1234948, 28743,  286, 1;
.
For row 3: F(x) := 1/cos(x). Then 225*F(x) + 259*(d/dx)^2(F(x)) + 35*(d/dx)^4(F(x)) + (d/dx)^6(F(x)) = 720*(1/cos(x))^7, where F^(r) denotes the r-th derivative of F(x).
		

Crossrefs

Programs

  • Maple
    t := proc(n,k) option remember ; expand(x*mul(x+n/2-i,i=1..n-1)) ; coeftayl(%,x=0,k) ; end:
    v := proc(n,k) option remember ; 4^(n-k)*t(2*n+1,2*k+1) ; end:
    A160563 := proc(n,k) abs(v(n,k)) ; end: for n from 0 to 10 do for k from 0 to n do printf("%d,",A160563(n,k)) ; od: od: # R. J. Mathar, May 20 2009
    # Using a bivariate generating function (albeit generating signed terms):
    gf := (t + sqrt(1 + t^2))^x: ser := series(gf, t, 20):
    ct := n -> coeff(ser, t, n): T := (n, k) -> n!*coeff(ct(n), x, k):
    OddPart := (T, len) -> local n, k;
    seq(print(seq(T(n, k), k = 1..n, 2)), n = 1..2*len, 2):
    OddPart(T, 6);  # Peter Luschny, Mar 03 2024
  • Mathematica
    t[, 0] = 1; t[n, n_] := t[n, n] = ((2*n - 1)!!)^2; t[n_, k_] := t[n, k] = (2*n - 1)^2*t[n - 1, k - 1] + t[n - 1, k];
    T[n_, k_] := t[n, n - k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 28 2017, after R. J. Mathar's comment *)

Formula

a(n,k) = |v(n,k)| where v(n,k) = v(n-1,k-1) - (2n-1)^2*v(n-1,k); eq (4.2).
Let F(x) = 1/cos(x). Then (2*n)!*(1/cos(x))^(2*n+1) = Sum_{k=0..n} T(n,k)*F^(2*k)(x), where F^(r) denotes the r-th derivative of F(x) (Zhang 1998). An example is given below. - Peter Bala, Feb 06 2012
Given a (0, 0)-based triangle U we call the triangle [U(n, k), k=1..n step 2, n=1..len step 2] the 'odd subtriangle' of U. This triangle is the odd subtriangle of U(n, k) = n! * [x^(n-k)] [t^n] (t + sqrt(1 + t^2))^x, albeit with signed terms. See A182867 for the even subtriangle. - Peter Luschny, Mar 03 2024

Extensions

Extended by R. J. Mathar, May 20 2009