A160574 Positive numbers y such that y^2 is of the form x^2+(x+313)^2 with integer x.
233, 313, 493, 905, 1565, 2725, 5197, 9077, 15857, 30277, 52897, 92417, 176465, 308305, 538645, 1028513, 1796933, 3139453, 5994613, 10473293, 18298073, 34939165, 61042825, 106648985, 203640377, 355783657, 621595837, 1186903097
Offset: 1
Keywords
Examples
(-105, a(1)) = (-105, 233) is a solution: (-105)^2+(-105+313)^2 = 11025+43264 = 54289 = 233^2. (A129640(1), a(2)) = (0, 313) is a solution: 0^2+(0+313)^2 = 97969 = 313^2. (A129640(3), a(4)) = (464, 905) is a solution: 464^2+(464+313)^2 = 215296+603729 = 819025 = 905^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1},{233,313,493,905,1565,2725},30] (* Harvey P. Dale, Dec 21 2022 *)
-
PARI
{forstep(n=-108, 10000000, [3, 1], if(issquare(2*n^2+626*n+97969, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=233, a(2)=313, a(3)=493, a(4)=905, a(5)=1565, a(6)=2725.
G.f.: (1-x)*(233+546*x+1039*x^2+546*x^3+233*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 313*A001653(k) for k >= 1.
Comments