cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160577 Positive numbers y such that y^2 is of the form x^2+(x+409)^2 with integer x.

Original entry on oeis.org

305, 409, 641, 1189, 2045, 3541, 6829, 11861, 20605, 39785, 69121, 120089, 231881, 402865, 699929, 1351501, 2348069, 4079485, 7877125, 13685549, 23776981, 45911249, 79765225, 138582401, 267590369, 464905801, 807717425, 1559630965
Offset: 1

Views

Author

Klaus Brockhaus, Jun 08 2009

Keywords

Comments

(-136, a(1)) and (A129641(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+409)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (473+168*sqrt(2))/409 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (204819+83570*sqrt(2))/409^2 for n mod 3 = 1.

Examples

			(-136, a(1)) = (-136, 305) is a solution: (-136)^2+(-136+409)^2 = 18496+74529 = 93025 = 305^2.
(A129641(1), a(2)) = (0, 409) is a solution: 0^2+(0+409)^2 = 167281 = 409^2.
(A129641(3), a(4)) = (611, 1189) is a solution: 611^2+(611+409)^2 = 373321+1040400 = 1413721 = 1189^2.
		

Crossrefs

Cf. A129641, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160578 (decimal expansion of (473+168*sqrt(2))/409), A160579 (decimal expansion of (204819+83570*sqrt(2))/409^2).

Programs

  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{305,409,641,1189,2045,3541},50] (* or *) Select[Table[Sqrt[x^2+(x+409)^2],{x,-140,10^6}],IntegerQ] (* The second program generates the first 16 terms of the sequence. To generate more, increase the x constant but the program may take a long time to run. *) (* Harvey P. Dale, Mar 14 2022 *)
  • PARI
    {forstep(n=-136, 10000000, [3, 1], if(issquare(2*n^2+818*n+167281, &k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=305, a(2)=409, a(3)=641, a(4)=1189, a(5)=2045, a(6)=3541.
G.f.: (1-x)*(305+714*x+1355*x^2+714*x^3+305*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 409*A001653(k) for k >= 1.