A160577 Positive numbers y such that y^2 is of the form x^2+(x+409)^2 with integer x.
305, 409, 641, 1189, 2045, 3541, 6829, 11861, 20605, 39785, 69121, 120089, 231881, 402865, 699929, 1351501, 2348069, 4079485, 7877125, 13685549, 23776981, 45911249, 79765225, 138582401, 267590369, 464905801, 807717425, 1559630965
Offset: 1
Keywords
Examples
(-136, a(1)) = (-136, 305) is a solution: (-136)^2+(-136+409)^2 = 18496+74529 = 93025 = 305^2. (A129641(1), a(2)) = (0, 409) is a solution: 0^2+(0+409)^2 = 167281 = 409^2. (A129641(3), a(4)) = (611, 1189) is a solution: 611^2+(611+409)^2 = 373321+1040400 = 1413721 = 1189^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1},{305,409,641,1189,2045,3541},50] (* or *) Select[Table[Sqrt[x^2+(x+409)^2],{x,-140,10^6}],IntegerQ] (* The second program generates the first 16 terms of the sequence. To generate more, increase the x constant but the program may take a long time to run. *) (* Harvey P. Dale, Mar 14 2022 *)
-
PARI
{forstep(n=-136, 10000000, [3, 1], if(issquare(2*n^2+818*n+167281, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=305, a(2)=409, a(3)=641, a(4)=1189, a(5)=2045, a(6)=3541.
G.f.: (1-x)*(305+714*x+1355*x^2+714*x^3+305*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 409*A001653(k) for k >= 1.
Comments