A160583 Positive numbers y such that y^2 is of the form x^2+(x+521)^2 with integer x.
445, 521, 629, 2041, 2605, 3329, 11801, 15109, 19345, 68765, 88049, 112741, 400789, 513185, 657101, 2335969, 2991061, 3829865, 13615025, 17433181, 22322089, 79354181, 101608025, 130102669, 462510061, 592214969, 758293925, 2695706185, 3451681789, 4419660881
Offset: 1
Keywords
Examples
(-84, a(1)) = (-84, 445) is a solution: (-84)^2+(-84+521)^2 = 7056+190969 = 198025 = 445^2. (A129725(1), a(2)) = (0, 521) is a solution: 0^2+(0+521)^2 = 271441 = 521^2. (A129725(3), a(4)) = (1159, 2041) is a solution: 1159^2+(1159+521)^2 = 1343281+2822400 = 4165681 = 2041^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 6, 0, 0, -1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {445, 521, 629, 2041, 2605, 3329}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2012 *)
-
PARI
{forstep(n=-84, 10000000, [3, 1], if(issquare(2*n^2+1042*n+271441, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=445, a(2)=521, a(3)=629, a(4)=2041, a(5)=2605, a(6)=3329.
G.f.: (1-x)*(445+966*x+1595*x^2+966*x^3+445*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 521*A001653(k) for k >= 1.
Comments