A160597 Denominator of coresilience C(n) = (n - phi(n))/(n-1).
1, 2, 3, 4, 5, 6, 7, 8, 3, 10, 11, 12, 13, 2, 15, 16, 17, 18, 19, 20, 7, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 11, 34, 35, 36, 37, 38, 13, 40, 41, 42, 43, 44, 15, 46, 47, 48, 49, 50, 51, 52, 53, 18, 55, 8, 19, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 3, 70, 71, 72, 73, 74
Offset: 2
Examples
a(10)=3 since for n=10, we have (n - phi(n))/(n-1) = (10-4)/9 = 2/3.
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
- Project Euler, Problem 245: resilient fractions, May 2009
Crossrefs
Cf. A160598.
Programs
-
Magma
[Denominator((n-EulerPhi(n))/(n-1)): n in [2..80]]; // Vincenzo Librandi, Dec 27 2016
-
Maple
seq(denom((n-numtheory:-phi(n))/(n-1)),n=2..100); # Robert Israel, Dec 26 2016
-
Mathematica
Denominator[Table[(n - EulerPhi[n])/(n - 1), {n, 2, 20}]] (* G. C. Greubel, Dec 26 2016 *)
-
PARI
A160597(n)=denominator((n-eulerphi(n))/(n-1))
Comments