cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160620 a(n) = Sum_{d|n} phi(n/d)^2*2^d.

Original entry on oeis.org

0, 2, 6, 16, 28, 64, 96, 200, 320, 616, 1152, 2248, 4304, 8480, 16728, 33152, 66048, 131584, 263160, 524936, 1050176, 2098240, 4196952, 8389576, 16782976, 33555744, 67117920, 134220712, 268453360, 536872480, 1073780352, 2147485448, 4295034880, 8589944384
Offset: 0

Views

Author

N. J. A. Sloane, Nov 21 2009

Keywords

Crossrefs

Programs

  • Maple
    A160620 := proc(n)
        if n =0 then
            0;
        else
            add((numtheory[phi](n/d))^2*2^d,d=numtheory[divisors](n)) ;
        end if ;
    end proc: # R. J. Mathar, Jun 24 2021
  • Mathematica
    a[n_]:= If[n<1, 0, Sum[EulerPhi[n/d]^2 * 2^d, {d, Divisors[n]}]]; Table[a[n], {n,0,50}] (* G. C. Greubel, May 06 2018 *)
  • PARI
    a(n) = if (n, sumdiv(n, d, eulerphi(n/d)^2*2^d), 0); \\ Michel Marcus, May 07 2018, Jun 22 2021

Formula

Dirichlet (convolution) product of A127473 and A000079. - R. J. Mathar, Jun 24 2021