cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160663 Number of distinct sums that one can obtain by adding two squares among the n first ones.

Original entry on oeis.org

2, 5, 9, 14, 19, 26, 33, 41, 50, 60, 70, 82, 93, 105, 119, 134, 147, 164, 179, 197, 215, 234, 251, 272, 293, 314, 336, 359, 381, 407, 430, 456, 483, 507, 535, 566, 594, 623, 652, 686, 714, 748, 780, 812, 849, 883, 918, 956, 992, 1030, 1068, 1107, 1141, 1181
Offset: 1

Views

Author

Romain CARRE (romain.carre.2008(AT)enseirb.fr), May 22 2009

Keywords

Comments

Essentially the same as A047800: a(n) = A047800(n) - 1.
Let A be the set of the n first squares (1,4,9,...,n^2). Let A+A be the corresponding sumset (= {a,b,a+b where (a,b) in A^2}). That very sequence describes the number of elements of A+A, relatively to n.
a(n-1) is the number of distinct positive distances on an n X n pegboard. What is its asymptotic growth? Can it be efficiently computed for large n? - Charles R Greathouse IV, Jun 13 2013
An upper bound is a(n) <= A102548(2n^2) << n^2/log n. - Charles R Greathouse IV, Jan 16 2023

Examples

			For n = 3, A = {1,4,9}, A+A = {1,4,9} U {2,5,10,8,13,18} thus A+A = {1,2,4,5,8,9,10,13,18}, and hence card(A+A) = 9; a(3) = 9.
		

References

  • Melvyn B. Nathanson (1996). "Additive Number Theory: the Classical Bases" Graduate Texts in Mathematics. 164. Springer-Verlag. p. 192. ISBN 0-387-94656-X.

Programs

  • Maple
    a:= proc(n) local A, i, j; A:= [i^2$i=1..n]; nops([{A[], seq (seq (A[i]+A[j], j=1..i), i=1..nops(A))}[]]) end: seq (a(n), n=1..60); # Alois P. Heinz, Jun 16 2009
  • Mathematica
    a[n_] := (Table[i^2 + j^2, {i, 0, n}, {j, i, n}] // Flatten // Union // Length) - 1; Array[a, 60] (* Jean-François Alcover, May 25 2018 *)
  • PARI
    a(n)=n++; #vecsort(vector(n^2,i,((i-1)\n)^2+((i-1)%n)^2),,8)-1 \\ Charles R Greathouse IV, Jun 13 2013
    
  • PARI
    a(n)=my(u=vector(n,i,i^2),v=List(u)); for(i=1,n, for(j=1,i, listput(v,u[i]+u[j]))); u=0; #Set(v) \\ Charles R Greathouse IV, Nov 18 2022
    
  • PARI
    first(n)=my(v=vector(n),u=[]); for(k=1,n, my(k2=k^2,w=vector(k,i,i^2+k2)); w=setunion(w,[k2]); u=setunion(u,w); v[k]=#u); v \\ Charles R Greathouse IV, Nov 18 2022
  • Python
    def a(n):
        SUM, SQR = set(), set(x**2 for x in range(1, n + 1))
        for i in SQR:
            SUM.add(i)
            for j in SQR: SUM.add(i + j)
        return len(SUM)
    # Romain CARRE (romain.carre.2008(AT)enseirb.fr), Apr 16 2010
    

Formula

a(n) = card(A+A) where A={k^2} k=1..n and A+A = {a,b,a+b where (a,b) in A^2}.
Trivially 2n <= a(n) <= n(n+1)/2. - Charles R Greathouse IV, Oct 30 2015
a(n) << n^2/sqrt(log n) [see A000404]. - Charles R Greathouse IV, Oct 30 2015

Extensions

More terms from Alois P. Heinz, Jun 16 2009