A160663 Number of distinct sums that one can obtain by adding two squares among the n first ones.
2, 5, 9, 14, 19, 26, 33, 41, 50, 60, 70, 82, 93, 105, 119, 134, 147, 164, 179, 197, 215, 234, 251, 272, 293, 314, 336, 359, 381, 407, 430, 456, 483, 507, 535, 566, 594, 623, 652, 686, 714, 748, 780, 812, 849, 883, 918, 956, 992, 1030, 1068, 1107, 1141, 1181
Offset: 1
Keywords
Examples
For n = 3, A = {1,4,9}, A+A = {1,4,9} U {2,5,10,8,13,18} thus A+A = {1,2,4,5,8,9,10,13,18}, and hence card(A+A) = 9; a(3) = 9.
References
- Melvyn B. Nathanson (1996). "Additive Number Theory: the Classical Bases" Graduate Texts in Mathematics. 164. Springer-Verlag. p. 192. ISBN 0-387-94656-X.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from Alois P. Heinz)
- L. G. Schnirelmann, Über additive Eigenschaften von Zahlen, Math. Ann. 107 (1933) 649-690.
- L. G. Schnirelmann, Über additive Eigenschaften von Zahlen, Math. Ann. 107 (1933) 649-690. doi:10.1007/BF01448914.
- Samuel S. Wagstaff, Jr., The Schnirelmann density of the sums of three squares, Proc. Amer. Math. Soc. 52 (1975), 1-7.
- Wikipedia, Additive number theory
- Wikipedia, Schnirelmann density
- Wikipedia, Edmund Landau
Programs
-
Maple
a:= proc(n) local A, i, j; A:= [i^2$i=1..n]; nops([{A[], seq (seq (A[i]+A[j], j=1..i), i=1..nops(A))}[]]) end: seq (a(n), n=1..60); # Alois P. Heinz, Jun 16 2009
-
Mathematica
a[n_] := (Table[i^2 + j^2, {i, 0, n}, {j, i, n}] // Flatten // Union // Length) - 1; Array[a, 60] (* Jean-François Alcover, May 25 2018 *)
-
PARI
a(n)=n++; #vecsort(vector(n^2,i,((i-1)\n)^2+((i-1)%n)^2),,8)-1 \\ Charles R Greathouse IV, Jun 13 2013
-
PARI
a(n)=my(u=vector(n,i,i^2),v=List(u)); for(i=1,n, for(j=1,i, listput(v,u[i]+u[j]))); u=0; #Set(v) \\ Charles R Greathouse IV, Nov 18 2022
-
PARI
first(n)=my(v=vector(n),u=[]); for(k=1,n, my(k2=k^2,w=vector(k,i,i^2+k2)); w=setunion(w,[k2]); u=setunion(u,w); v[k]=#u); v \\ Charles R Greathouse IV, Nov 18 2022
-
Python
def a(n): SUM, SQR = set(), set(x**2 for x in range(1, n + 1)) for i in SQR: SUM.add(i) for j in SQR: SUM.add(i + j) return len(SUM) # Romain CARRE (romain.carre.2008(AT)enseirb.fr), Apr 16 2010
Formula
a(n) = card(A+A) where A={k^2} k=1..n and A+A = {a,b,a+b where (a,b) in A^2}.
Trivially 2n <= a(n) <= n(n+1)/2. - Charles R Greathouse IV, Oct 30 2015
a(n) << n^2/sqrt(log n) [see A000404]. - Charles R Greathouse IV, Oct 30 2015
Extensions
More terms from Alois P. Heinz, Jun 16 2009
Comments