cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160705 Hankel transform of A052702.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, -1, -4, -4, 5, 9, 9, -14, -16, -16, 30, 25, 25, -55, -36, -36, 91, 49, 49, -140, -64, -64, 204, 81, 81, -285, -100, -100, 385, 121, 121, -506, -144, -144, 650, 169, 169, -819, -196, -196, 1015, 225, 225, -1240, -256, -256
Offset: 0

Views

Author

Paul Barry, May 24 2009

Keywords

Comments

a(n+5) is the Hankel transform of A052702(n+4).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); [0,0,0,0] cat Coefficients(R!(x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ))); // G. C. Greubel, May 02 2018
  • Mathematica
    LinearRecurrence[{0,0,-4,0,0,-6,0,0,-4,0,0,-1}, {0,0,0,0,1,1,-1,-4,-4,5,9,9}, 50] (* G. C. Greubel, May 02 2018 *)
  • PARI
    x='x+O('x^50); concat([0,0,0,0], Vec(x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ))) \\ G. C. Greubel, May 02 2018
    

Formula

G.f.: x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ).
a(n) = -4*a(n-3) -6*a(n-6) -4*a(n-9) -a(n-12).