A160707
Convolution square root of the Robbins sequence, A005130, starting with offset 1.
Original entry on oeis.org
1, 1, 3, 18, 192, 3472, 104964, 5306272, 450215638, 64298445920
Offset: 1
Self-convolution = the Robbins sequence, A005130: (1, 2, 7, 42, 429, 7436, ...).
Example: A005130(4) = 42 = (1, 1, 3, 18) dot (18, 3, 1, 1) = (18 + 3 + 3 + 18).
The reversed procedure given (1, 2, 7, 42, ...) for a(4) = 18 = (1/2) * (42 - 2*a(3)) = (1/2) * 36 = 18.
Original entry on oeis.org
1, 2, 4, 11, 53, 482, 7918, 226266, 11076482, 922911942, 130457184642, 31226202037017, 12642538061714517, 8652026056359367017, 10004193381504526849017, 19539080428042781631746217
Offset: 0
a(17) = 1 + 1 + 2 + 7 + 42 + 429 + 7436 + 218348 + 10850216 + 911835460 + 129534272700 + 31095744852375 + 12611311859677500 + 8639383518297652500 + 9995541355448167482000 + 19529076234661277104897200 + 64427185703425689356896743840 + 358869201916137601447486156417296.
Cf.
A005130,
A006366,
A048601, also
A003827,
A005156,
A005158,
A005160-
A005164,
A050204,
A049503,
A160707,
A160708.
-
Table[Sum[Product[(3 k + 1)!/(j + k)!, {k, 0, j - 1}], {j, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 26 2017 *)
Accumulate[Table[Product[(3k+1)!/(n+k)!,{k,0,n-1}],{n,0,20}]] (* Harvey P. Dale, Feb 06 2019 *)
Showing 1-2 of 2 results.
Comments