cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160767 Expansion of (1+12*x+28*x^2+12*x^3+x^4)/(1-x)^5.

Original entry on oeis.org

1, 17, 103, 367, 971, 2131, 4117, 7253, 11917, 18541, 27611, 39667, 55303, 75167, 99961, 130441, 167417, 211753, 264367, 326231, 398371, 481867, 577853, 687517, 812101, 952901, 1111267, 1288603, 1486367, 1706071, 1949281, 2217617, 2512753
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [(9*n^4 +18*n^3 +23*n^2 +14*n +4)/4: n in [0..30]]; // G. C. Greubel, Apr 26 2018
  • Mathematica
    CoefficientList[Series[(1+12x+28x^2+12x^3+x^4)/(1-x)^5,{x,0,40}],x] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,17,103,367,971},40] (* Harvey P. Dale, Dec 11 2014 *)
  • PARI
    for(n=0, 30, print1((9*n^4 +18*n^3 +23*n^2 +14*n +4)/4, ", ")) \\ G. C. Greubel, Apr 26 2018
    

Formula

G.f.: (1+12*x+28*x^2+12*x^3+x^4)/(1-x)^5.
a(n) = 9*n^4/4 +9*n^3/2 +23*n^2/4 +7*n/2 +1. - R. J. Mathar, Sep 11 2011
a(0)=1, a(1)=17, a(2)=103, a(3)=367, a(4)=971, a(n)=5*a(n-1)- 10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, Feb 28 2015
E.g.f.: (4 + 64*x + 140*x^2 + 72*x^3 + 9*x^4)*exp(x)/4. - G. C. Greubel, Apr 26 2018