A160816 Expansion of (1+62*x+563*x^2+1032*x^3+467*x^4+50*x^5+x^6)/(1-x)^7.
1, 69, 1025, 6793, 28873, 92989, 247913, 576465, 1208689, 2337205, 4234737, 7273817, 11948665, 18899245, 28937497, 43075745, 62557281, 88889125, 123876961, 169662249, 228761513, 304107805, 399094345, 517620337, 664138961
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Magma
[136*n^6/45 +151*n^5/15 +167*n^4/9 +19*n^3+559*n^2/45 +74*n/15 +1: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
-
Mathematica
CoefficientList[Series[(1+62*x+563*x^2+1032*x^3+467*x^4 +50*x^5+x^6)/(1-x)^7, {x, 0, 50}], x] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 69, 1025, 6793, 28873, 92989, 247913}, 50] (* G. C. Greubel, Apr 26 2018 *)
-
PARI
x='x+O('x^30); Vec((1+62*x+563*x^2+1032*x^3+467*x^4 +50*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 26 2018
Formula
a(n) = 136*n^6/45 +151*n^5/15 +167*n^4/9 +19*n^3+559*n^2/45 +74*n/15 +1. - R. J. Mathar, Sep 17 2011
Comments