cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160835 G.f.: (1+44*x+339*x^2+630*x^3+323*x^4+42*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 51, 675, 4319, 18131, 58121, 154701, 359605, 754189, 1459111, 2645391, 4546851, 7473935, 11828909, 18122441, 26991561, 39219001, 55753915, 77733979, 106508871, 143665131, 191052401, 250811045, 325401149, 417632901, 530698351
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [1+n*(n+1)*(23*n^4+48*n^3+98*n^2+73*n+58)/12: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
    
  • Mathematica
    Table[1+n*(n+1)*(23*n^4+48*n^3+98*n^2+73*n+58)/12, {n,0,30}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 51, 675, 4319, 18131, 58121, 154701}, 30] (* G. C. Greubel, Apr 28 2018 *)
  • PARI
    for(n=0,30, print1(1+n*(n+1)*(23*n^4+48*n^3+98*n^2+73*n+58)/12, ", ")) \\ G. C. Greubel, Apr 28 2018

Formula

a(n) = 1+n*(n+1)*(23*n^4+48*n^3+98*n^2+73*n+58)/12. - R. J. Mathar, Sep 17 2011