A160843 Number of lines through at least 2 points of a 3 X n grid of points.
0, 1, 11, 20, 35, 52, 75, 100, 131, 164, 203, 244, 291, 340, 395, 452, 515, 580, 651, 724, 803, 884, 971, 1060, 1155, 1252, 1355, 1460, 1571, 1684, 1803, 1924, 2051, 2180, 2315, 2452, 2595, 2740, 2891, 3044, 3203, 3364, 3531, 3700, 3875, 4052, 4235, 4420
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- S. Mustonen, On lines and their intersection points in a rectangular grid of points
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Magma
[0, 1] cat [2*n^2 + 3 - n mod 2: n in [2..100]]; // G. C. Greubel, Apr 30 2018
-
Mathematica
a[n_]:=If[n<2,n,2*n^2+3-Mod[n,2]] Table[a[n],{n,0,47}] Join[{0, 1}, LinearRecurrence[{2, 0, -2, 1}, {11, 20, 35, 52}, 20]] (* G. C. Greubel, Apr 30 2018 *)
-
PARI
Vec(-x*(3*x^4-3*x^3-2*x^2+9*x+1)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, May 24 2015
Formula
a(n) = 2*n^2 + 3 - n mod 2.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 5. - Colin Barker, May 24 2015
G.f.: -x*(3*x^4 - 3*x^3 - 2*x^2 + 9*x + 1) / ((x-1)^3*(x+1)). - Colin Barker, May 24 2015