cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160850 Number of lines through at least 2 points of a 10 X n grid of points.

Original entry on oeis.org

0, 1, 102, 203, 370, 563, 836, 1111, 1470, 1855, 2306, 2757, 3298, 3857, 4506, 5159, 5868, 6603, 7428, 8255, 9172, 10105, 11098, 12101, 13194, 14305, 15496, 16697, 17964, 19251, 20628, 21997, 23456, 24941, 26492, 28053, 29688, 31341, 33084
Offset: 0

Views

Author

Seppo Mustonen, May 28 2009

Keywords

Crossrefs

Column k=10 of A295707.

Programs

  • Mathematica
    m=10;
    a[0]=0; a[1]=1;
    a[2]=m^2+2;
    a[3]=2*m^2+3-Mod[m,2];
    a[n_]:=a[n]=2*a[n-1]-a[n-2]+2*p1[m,n]+2*p4[m,n]
    p1[m_,n_]:=Sum[p2[m,n,y], {y,1,m-1}]
    p2[m_,n_,y_]:=If[GCD[y,n-1]==1,m-y,0]
    p[i_]:=If[i>0,i,0]
    p2[m_,n_,x_,y_]:=p2[m,n,x,y]=(n-x)*(m-y)-p[n-2*x]*p[m-2*y]
    p3[m_,n_,x_,y_]:=p2[m,n,x,y]-2*p2[m,n-1,x,y]+p2[m,n-2,x,y]
    p4[m_,n_]:=p4[m,n]=If[Mod[n,2]==0,0,p42[m,n]]
    p42[m_,n_]:=p42[m,n]=Sum[p43[m,n,y], {y,1,m-1}]
    p43[m_,n_,y_]:=If[GCD[(n-1)/2,y]==1,p3[m,n,(n-1)/2,y],0]
    Table[a[n],{n,0,39}]

Formula

a(n) = (1/2)*(f(m,n,1) - f(m,n,2)) where f(m,n,k) = Sum((n-|kx|)*(m-|ky|)); -n < kx < n, -m < ky < m, (x,y)=1, m=10.
For another more efficient formula, see Mathematica code below.
Conjectures from Colin Barker, Dec 25 2017: (Start)
G.f.: x*(1 + 102*x + 204*x^2 + 472*x^3 + 766*x^4 + 1205*x^5 + 1571*x^6 + 1999*x^7 + 2188*x^8 + 2334*x^9 + 2168*x^10 + 1959*x^11 + 1531*x^12 + 1165*x^13 + 746*x^14 + 462*x^15 + 214*x^16 + 112*x^17 + 21*x^18 + 10*x^19 + 10*x^20) / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = -a(n-2) + a(n-5) + a(n-6) + 2*a(n-7) + a(n-8) + a(n-9) - a(n-11) - a(n-12) - 2*a(n-13) - a(n-14) - a(n-15) + a(n-18) + a(n-20) for n>21.
(End)