cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160893 a(n) = Sum_{d|n} Möbius(n/d)*d^5/phi(n).

Original entry on oeis.org

1, 31, 121, 496, 781, 3751, 2801, 7936, 9801, 24211, 16105, 60016, 30941, 86831, 94501, 126976, 88741, 303831, 137561, 387376, 338921, 499255, 292561, 960256, 488125, 959171, 793881, 1389296, 732541, 2929531, 954305, 2031616, 1948705
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^5 such that the quotient group Z^5 / L is C_nm x (C_m)^4 (and also (C_nm)^4 x C_m), for every m>=1. - Álvar Ibeas, Oct 30 2015

Crossrefs

Programs

  • Maple
    A160893 := proc(n) a := 1 ; for f in ifactors(n)[2] do p := op(1,f) ; e := op(2,f) ; a := a*p^(4*e-4)*(1+p+p^2+p^3+p^4) ; end do; a; end proc: # R. J. Mathar, Jul 10 2011
  • Mathematica
    A160893[n_]:=DivisorSum[n,MoebiusMu[n/# ]*#^(6-1)/EulerPhi[n]&] (* Enrique Pérez Herrero, Oct 19 2010 *)
    f[p_, e_] := p^(4*e - 4)*(1 + p + p^2 + p^3 + p^4); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d^5/eulerphi(n)); \\ Michel Marcus, Feb 15 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^5 - 1)*f[i, 1]^(4*f[i, 2] - 4)/(f[i, 1] - 1)); } \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_5(n)/J_1(n) = J_5(n)/phi(n) = A059378(n)/A000010(n), where J_k is the k-th Jordan totient function. - Enrique Pérez Herrero, Oct 19 2010
Multiplicative with a(p^e) = p^(4e-4)*(1 + p+ p^2 + p^3 + p^4). - R. J. Mathar, Jul 10 2011
For squarefree n, a(n) = A000203(n^4). - Álvar Ibeas, Oct 30 2015
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^5, where c = (1/5) * Product_{p prime} (1 + (p^4-1)/((p-1)*p^5)) = 0.3799167034... .
Sum_{k>=1} 1/a(k) = zeta(4)*zeta(5) * Product_{p prime} (1 - 2/p^5 + 1/p^9) = 1.0449010968... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^5). - Ridouane Oudra, Apr 01 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 19 2010