A160911 a(n) is the number of arrangements of n square tiles with coprime sides in a rectangular frame, counting reflected, rotated or rearranged tilings only once.
1, 1, 2, 5, 11, 29, 84, 267, 921, 3481, 14322, 62306, 285845, 1362662, 6681508, 33483830
Offset: 1
Examples
From _Rainer Rosenthal_, Dec 24 2022, updated May 09 2024: (Start) . |A| |A B| |B| |C D| (2 X 2: 1,1,1,1) |C| (4 X 1: 1,1,1,1) |D| . |A A| |A A A| |A A| |A A A| |B B| |A A A| (4 X 3: 3,1,1,1) |B B| (5 X 2: 2,2,1,1) |B C D| |C D| . |A A A| |A A A| <================= 3 X 3 minor A |A A A| 2 X 2 minor B |B B C| (5 X 3: 3,2,1,1) 1 X 1 minor C |B B D| 1 X 1 minor D ________________________________________________________ a(4) = 5 illustrated as (p X q: t_1,t_2,t_3,t_4) and as p X q matrices with t_i X t_i minors . Example configurations for a(6) = 29: . |A A A A| |A A A A| |A A A A| |A A B| |A B| |A A A A| |A A C| |C D| |B B C D| |D E F| |E F| |B B E F| ______________________________________________ (3 X 3: (3 X 2: (6 X 4: 2,1,1,1,1,1) 1,1,1,1,1,1) 4,2,1,1,1,1) . _________________________ |A A A A A A B B B B B B B| | | | |A A A A A A B B B B B B B| | | | |A A A A A A B B B B B B B| | 6 | | |A A A A A A B B B B B B B| | | 7 | |A A A A A A B B B B B B B| | | | |A A A A A A B B B B B B B| |___________| | |C C C C C D B B B B B B B| | |1|_____________| |C C C C C E E E E F F F F| | | | | |C C C C C E E E E F F F F| | 5 | 4 | 4 | |C C C C C E E E E F F F F| | | | | |C C C C C E E E E F F F F| |_________|_______|_______| _____________________________ _____________________________ (13 X 11: 7,6,5,4,4,1) (13 X 11: 7,6,5,4,4,1) [rotated by 90 degrees] [alternate visualization] .(End)
Links
- Stuart E. Anderson, Perfect Squared Rectangles and Squared Squares
Crossrefs
Extensions
a(15)-a(16) from Kevin Johnston, Feb 11 2016
Title changed from Rainer Rosenthal, Dec 28 2022
Comments