A160918 Averages of twin prime pairs that are sums of 4 consecutive averages of twin prime pairs.
102, 150, 420, 660, 858, 1020, 2310, 2730, 3120, 3390, 5100, 5502, 5850, 6198, 7758, 12540, 13692, 13998, 15360, 17292, 21840, 23688, 25932, 32832, 41520, 43398, 46092, 49032, 49410, 50892, 58152, 61560, 64920, 70878, 72270, 78138, 88818
Offset: 1
Keywords
Examples
102 is in the sequence because it can be written as 12 + 18 + 30 + 42. 150 is in the sequence because it is 18 + 30 + 42 + 60.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
PrimeNextTwinAverage[n_]:=Module[{k},k=n+1;While[ !PrimeQ[k-1]||!PrimeQ[k+1],k++ ];k];lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1],a=n;b=PrimeNextTwinAverage[a];c=PrimeNextTwinAverage[b];d=PrimeNextTwinAverage[c];a=a+b+c+d;If[PrimeQ[a-1]&&PrimeQ[a+1],AppendTo[lst,a]]],{n,2*8!}];lst With[{tpms=Mean/@Select[Partition[Prime[Range[10000]],2,1],#[[2]]- #[[1]] ==2&]},Total/@Select[Partition[tpms,4,1],MemberQ[tpms,Total[#]]&]] (* Harvey P. Dale, Apr 27 2012 *)
Comments