A160919 Averages of twin prime pairs that are sums of 5 consecutive averages of twin prime pairs.
108, 570, 858, 1452, 3330, 6792, 7458, 9420, 9630, 10710, 10890, 13722, 17388, 18120, 25032, 27582, 27792, 34032, 68712, 68898, 72270, 76830, 78978, 81372, 89820, 90402, 95232, 99708, 104472, 119772, 122868, 125790, 138078, 165312
Offset: 1
Examples
Averages of twin prime pairs: 4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, 150, ... 108 = 6 + 12 + 18 + 30 + 42, 570 = 72 + 102 + 108 + 138 + 150, ...
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
PrimeNextTwinAverage[n_]:=Module[{k},k=n+1; While[ !PrimeQ[k-1]||!PrimeQ[k+1],k++ ];k];lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1],a=n;b=PrimeNextTwinAverage[a]; c=PrimeNextTwinAverage[b]; d=PrimeNextTwinAverage[c];e=PrimeNextTwinAverage[d]; a=a+b+c+d+e; If[PrimeQ[a-1]&&PrimeQ[a+1],AppendTo[lst,a]]],{n,3*8!}];lst Select[Total/@(Partition[Mean/@Select[Partition[Prime[Range[10000]],2,1],#[[2]]-#[[1]]==2&],5,1]),AllTrue[#+{1,-1},PrimeQ]&] (* Harvey P. Dale, Sep 26 2024 *)