A161124 Number of inversions in all fixed-point-free involutions of {1,2,...,2n}.
0, 1, 12, 135, 1680, 23625, 374220, 6621615, 129729600, 2791213425, 65472907500, 1663666579575, 45537716624400, 1336089255125625, 41837777148667500, 1392813754566609375, 49126088694402720000, 1830138702650463830625, 71812362934450726087500
Offset: 0
Keywords
Examples
a(2) = 12 because the fixed-point-free involutions 2143, 3412, and 4321 have 2, 4, and 6 inversions, respectively.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- E. Pérez Herrero, Max Determinant, Psychedelic Geometry Blogspot, 15 Jan 2013
Programs
-
Maple
seq(n^2*factorial(2*n)/(factorial(n)*2^n), n = 0 .. 18);
-
Mathematica
nn=40;Prepend[Select[Range[0,nn]!CoefficientList[Series[(x^2/2+x^4/4)Exp[x^2/2],{x,0,nn}],x],#>0&],0] (* Geoffrey Critzer, Mar 03 2013 *) Table[n^2 (2n-1)!!,{n,0,20}] (* Harvey P. Dale, Jan 05 2014 *)
Formula
a(n) = n^2*(2n-1)!!.
a(n) = n^2*A001147(n). - Enrique Pérez Herrero, Jan 14 2013
a(n) = (2n)! * [x^(2n)] (x^2/2 + x^4/4)*exp(x^2/2). - Geoffrey Critzer, Mar 03 2013
D-finite with recurrence a(n) +(-2*n-7)*a(n-1) +(8*n-3)*a(n-2) +(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jul 26 2022
Comments