A161128 a(n) = n!*(1/1 + 1/2 + ... + 1/n) - (1! + 2! + ... + n!).
0, 0, 0, 2, 17, 121, 891, 7155, 63351, 617463, 6590727, 76589127, 963486567, 13052781927, 189537379047, 2937560365287, 48409889869287, 845393769958887, 15596602532173287, 303139660882458087, 6191620542649779687
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..449
Programs
-
Magma
[0] cat [Factorial(n)*HarmonicNumber(n) - (&+[Factorial(k): k in [1..n]]): n in [1..30]]; // G. C. Greubel, Oct 14 2018
-
Maple
a := proc (n) options operator, arrow: factorial(n)*harmonic(n)-add(factorial(j), j = 1 .. n) end proc: seq(a(n), n = 0 .. 22); # Alternative: f:= gfun:-rectoproc({(n+1)*n*a(n+3) - n*(2*n^2+8*n+7)*a(n+2) + (n+2)*(n^3+5*n^2+6*n+1)*a(n+1) - (n+1)^3*(n+2)*a(n), a(0)=0, a(1)=0, a(2)=0, a(3)=2},a(n),remember): map(f, [$0..30]); # Robert Israel, Apr 11 2018
-
Mathematica
Table[n!*HarmonicNumber[n] - Sum[k!, {k,1,n}], {n,0,30}] (* G. C. Greubel, Oct 14 2018 *)
-
PARI
a(n) = n!*sum(k=1, n, 1/k) - sum(k=1, n, k!); \\ Michel Marcus, Apr 11 2018
Formula
(n+1)*n*a(n+3) - n*(2*n^2+8*n+7)*a(n+2) + (n+2)*(n^3+5*n^2+6*n+1)*a(n+1) - (n+1)^3*(n+2)*a(n) = 0. - Robert Israel, Apr 11 2018
Comments