cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161131 Number of permutations of {1,2,...,n} that have no odd fixed points.

Original entry on oeis.org

1, 0, 1, 3, 14, 64, 426, 2790, 24024, 205056, 2170680, 22852200, 287250480, 3597143040, 52370755920, 760381337520, 12585067447680, 207863095910400, 3854801333416320, 71370457471716480, 1465957162768492800, 30071395843421184000, 677696237345719468800
Offset: 0

Views

Author

Emeric Deutsch, Jul 18 2009

Keywords

Examples

			a(3)=3 because we have 312, 231, and 321.
		

Crossrefs

Programs

  • Maple
    d[0] := 1: for n to 25 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: add(d[n-j]*binomial(floor((1/2)*n), j), j = 0 .. floor((1/2)*n)) end proc; seq(a(n), n = 0 .. 22);
    a := proc (n) options operator, arrow: add((-1)^j*binomial(ceil((1/2)*n), j)*factorial(n-j), j = 0 .. ceil((1/2)*n)) end proc; seq(a(n), n = 0 .. 22); # Emeric Deutsch, Jul 18 2009
    # next Maple program:
    a:= proc(n) option remember; `if`(n<4, [1, 0, 1, 3][n+1],
          (8*(n-1)*(2*n-5)*a(n-1)+2*(8*n^4-48*n^3+102*n^2-90*n+29)*a(n-2)
           -2*(2*n-1)*(n-2)*a(n-3)+(2*n-1)*(2*n-3)*(n-2)*(n-3)*a(n-4))
           /(4*(2*n-3)*(2*n-5)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 15 2022
    a := n -> n!*hypergeom([-ceil(n/2)], [-n], -1):
    seq(simplify(a(n)), n = 0..22);  # Peter Luschny, Jul 15 2022
  • Mathematica
    Table[Sum[(-1)^j*Binomial[Ceiling[n/2], j]*(n-j)!, {j, 0, Ceiling[n/2]}], {n, 0, 30}] (* Vaclav Kotesovec, Feb 18 2017 *)
  • PARI
    for(n=0, 30, print1(sum(j=0, ceil(n/2), (-1)^j*binomial(ceil(n/2), j)*(n - j)!),", ")) \\ Indranil Ghosh, Mar 08 2017

Formula

a(n) = Sum_{j=0..floor(n/2)} d(n-j)*binomial(floor(n/2), j), where d(i)=A000166(i) are the derangement numbers.
a(n) = Sum_{j=0..ceiling(n/2)} (-1)^j*binomial(ceiling(n/2), j)*(n-j)!. - Emeric Deutsch, Jul 18 2009
a(n) ~ exp(-1/2) * n!. - Vaclav Kotesovec, Feb 18 2017
From Peter Luschny, Jul 15 2022: (Start)
a(n) = n!*hypergeom([-ceiling(n/2)], [-n], -1).
a(n) = A068106(n, floor(n/2)). (End)
D-finite with recurrence +16*a(n) -24*a(n-1) -4*(2*n-1)*(2*n-3)*a(n-2) +4*(2*n^2-10*n+15)*a(n-3) +2*(-10*n+29)*a(n-4) +2*(n-2)*(n-4)*a(n-5) +(n-4)*(n-5)*a(n-6)=0. - R. J. Mathar, Jul 26 2022