A334279
Irregular table read by rows: T(n, k) is the coefficient of x^k in the chromatic polynomial of the 1-skeleton of the n-dimensional cross polytope, 0 <= k <= 2n.
Original entry on oeis.org
0, 0, 1, 0, -3, 6, -4, 1, 0, -64, 154, -137, 58, -12, 1, 0, -2790, 7467, -7852, 4300, -1346, 244, -24, 1, 0, -205056, 593016, -698250, 448015, -175004, 43608, -6990, 700, -40, 1, 0, -22852200, 70164670, -89812001, 64407806, -29113410, 8790285, -1822164, 260868, -25405, 1610, -60, 1
Offset: 1
Table begins:
n/k| 0 1 2 3 4 5 6 7 8 9 10
---+---------------------------------------------------------------
1| 0 0 1
2| 0 -3 6 -4 1
3| 0 -64 154 -137 58 -12 1
4| 0 -2790 7467 -7852 4300 -1346 244 -24 1
5| 0 -205056 593016 -698250 448015 -175004 43608 -6990 700 -40 1
- Peter Kagey, Table of n, a(n) for n = 1..2600 (first 50 rows)
- Chong-Yun Chao and George A. Novacky Jr., On maximally saturated graphs, Discrete Math., 41 (1982), 139-143.
- Eric Weisstein's World of Mathematics, Chromatic Polynomial
- Eric Weisstein's World of Mathematics, Cocktail Party Graph
- Wikipedia, Cross-polytope
- Wikipedia, Turán graph
A334278 is analogous for the n-dimensional hypercube.
A161132
Number of permutations of {1,2,...,n} that have no even fixed points.
Original entry on oeis.org
1, 1, 1, 4, 14, 78, 426, 3216, 24024, 229080, 2170680, 25022880, 287250480, 3884393520, 52370755920, 812752093440, 12585067447680, 220448163358080, 3854801333416320, 75225258805132800, 1465957162768492800, 31537353006189676800, 677696237345719468800
Offset: 0
a(3)=4 because we have 132, 312, 213, and 231.
-
d[0] := 1: for n to 25 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: add(d[n-j]*binomial(ceil((1/2)*n), j), j = 0 .. ceil((1/2)*n)) end proc: seq(a(n), n = 0 .. 22);
a := proc (n) options operator, arrow: add((-1)^j*binomial(floor((1/2)*n), j)*factorial(n-j), j = 0 .. floor((1/2)*n)) end proc; seq(a(n), n = 0 .. 22); # Emeric Deutsch, Jul 18 2009
a := n -> n!*hypergeom([-floor(n/2)], [-n], -1):
seq(simplify(a(n)), n = 0..22); # Peter Luschny, Jul 15 2022
-
a[n_] := Sum[Subfactorial[n-j]*Binomial[Ceiling[n/2], j], {j, 0, Ceiling[ n/2]}]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 19 2017 *)
-
for (n=0, 30, print1(sum(j=0, floor(n/2), (-1)^j*binomial(floor(n/2),j)*(n - j)!),", ")) \\ Indranil Ghosh, Mar 08 2017
-
import math
f=math.factorial
def C(n, r): return f(n)/ f(r)/ f(n - r)
def A161132(n):
s=0
for j in range(0, (n/2)+1):
s += (-1)**j*C(n/2, j)*f(n - j)
return s # Indranil Ghosh, Mar 08 2017
A161133
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having exactly k odd fixed points (0 <= k <= ceiling(n/2)).
Original entry on oeis.org
1, 0, 1, 1, 1, 3, 2, 1, 14, 8, 2, 64, 42, 12, 2, 426, 234, 54, 6, 2790, 1704, 468, 72, 6, 24024, 12864, 3024, 384, 24, 205056, 120120, 32160, 5040, 480, 24, 2170680, 1145400, 272400, 37200, 3000, 120, 22852200, 13024080, 3436200, 544800, 55800
Offset: 0
T(3,0)=3 because we have 312, 231, 321; T(3,2)=1 because we have 123.
Triangle starts:
1;
0, 1;
1, 1;
3, 2, 1;
14, 8, 2;
64, 42, 12, 2;
426, 234, 54, 6;
-
T := proc (n, k) options operator, arrow: binomial(ceil((1/2)*n), k)*add((-1)^j*binomial(ceil((1/2)*n)-k, j)*factorial(n-k-j), j = 0 .. ceil((1/2)*n)-k) end proc: for n from 0 to 12 do seq(T(n, k), k = 0 .. ceil((1/2)*n)) end do; # yields sequence in triangular form
-
Flatten[Table[Binomial[Ceiling[n/2], k]*Sum[(-1)^j*(n - k - j)!*Binomial[Ceiling[n/2] - k, j], {j, 0, Ceiling[n/2] - k}],{n, 0, 11}, {k, 0, Ceiling[n/2]}]] (* Indranil Ghosh, Mar 08 2017 *)
-
tabf(nn) = { for(n=0, nn, for(k = 0, ceil(n/2), print1(binomial(ceil(n/2), k) * sum(j=0, ceil(n/2) - k, (-1)^j*(n - k - j)! * binomial(ceil(n/2) - k, j)),", ");); print();); };
tabf(12); \\ Indranil Ghosh, Mar 08 2017
A187847
Number of permutations p of [n] with p(i) <> i^2.
Original entry on oeis.org
1, 0, 1, 4, 14, 78, 504, 3720, 30960, 256320, 2656080, 30078720, 369774720, 4906137600, 69894316800, 1064341555200, 16190733081600, 279499828608000, 5100017213491200, 98087346669312000, 1983334021853184000, 42063950934061056000, 933754193111900160000
Offset: 0
a(3) = 4: (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).
-
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> `if`(j<>i^2, 1, 0)))):
seq(a(n), n=0..15);
# second Maple program:
a:= n->(p->add((-1)^(j)*binomial(p, j)*(n-j)!, j=0..p))(floor(sqrt(n))):
seq(a(n), n=0..25); # Alois P. Heinz, Nov 02 2014
-
a[n_] := With[{p = Floor[Sqrt[n]]}, Sum[(-1)^j*Binomial[p, j]*(n-j)!, {j, 0, p}]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 25}] (* Jean-François Alcover, Jan 07 2016, adapted from Maple *)
A247978
Number of permutations of [n] that have no prime fixed points.
Original entry on oeis.org
1, 1, 1, 3, 14, 64, 426, 2790, 24024, 229080, 2399760, 25022880, 312273360, 3884393520, 56255149440, 869007242880, 14266826784000, 233845982899200, 4309095479673600, 79300508301907200, 1620482929875532800, 34699018357638835200, 777011144137311283200
Offset: 0
a(2) = 1: 21.
a(3) = 3: 132, 231, 312.
a(4) = 14: 1324, 1342, 1423, 2143, 2314, 2341, 2413, 3124, 3142, 3412, 3421, 4123, 4312, 4321.
-
with(numtheory):
a:= n-> add((-1)^(j)*binomial(pi(n), j)*(n-j)!, j=0..pi(n)):
seq(a(n), n=0..25);
-
a[n_] := Sum[(-1)^j*Binomial[PrimePi[n], j]*(n-j)!, {j, 0, PrimePi[n]}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 26 2017, translated from Maple *)
-
for(n=0, 25, print1(sum(j=0, primepi(n), (-1)^j*binomial(primepi(n), j)*(n - j)!), ", ")) \\ Indranil Ghosh, Mar 08 2017
Showing 1-5 of 5 results.
Comments