cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A334278 Irregular table read by rows: T(n, k) is the coefficient of x^k in the chromatic polynomial of the cubical graph Q_n, 0 <= k <= 2^n.

Original entry on oeis.org

0, 1, 0, -1, 1, 0, -3, 6, -4, 1, 0, -133, 423, -572, 441, -214, 66, -12, 1, 0, -3040575, 14412776, -31680240, 43389646, -41821924, 30276984, -17100952, 7701952, -2794896, 818036, -191600, 35264, -4936, 496, -32, 1
Offset: 0

Views

Author

Peter Kagey, Apr 21 2020

Keywords

Comments

The sums of the absolute values of the entries in each row gives A334247, the number of acyclic orientations of edges of the n-cube.

Examples

			Table begins:
n/k| 0     1    2     3    4     5   6    7  8
---+-------------------------------------------
  0| 0,    1
  1| 0,   -1,   1
  2| 0,   -3,   6,   -4,   1
  3| 0, -133, 423, -572, 441, -214, 66, -12, 1
		

Crossrefs

Cf. A296914 is the reverse of row 3.
Cf. A334279 is analogous for the n-dimensional cross-polytope, the dual of the n-cube.

Programs

  • Maple
    with(GraphTheory): with(SpecialGraphs):
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
        ChromaticPolynomial(HypercubeGraph(n), x)):
    seq(T(n), n=0..4);  # Alois P. Heinz, Jan 14 2025
  • Mathematica
    T[n_, k_] := Coefficient[ChromaticPolynomial[HypercubeGraph[n], x], x, k]

Formula

T(n,0) = 0.
T(n,k) = Sum_{i=1..2^n}, Stirling1(i,k) * A334159(n,i). - Andrew Howroyd, Apr 25 2020

A334281 Number of n-colorings of the vertices of the 4-dimensional cross polytope such that no two adjacent vertices have the same color.

Original entry on oeis.org

0, 0, 0, 0, 24, 600, 7560, 61320, 351120, 1515024, 5266800, 15531120, 40308840, 94534440, 204228024, 412284600, 786283680, 1428742560, 2490276960, 4186173024, 6816915000, 10793253240, 16666437480, 25164280680, 37233759024, 54090894000, 77278702800
Offset: 0

Views

Author

Peter Kagey, Apr 21 2020

Keywords

Comments

The 4-dimensional cross-polytope is sometimes called the 16-cell. It is one of the six convex regular 4-polytopes.

Crossrefs

Cf. A091940 (2-dimensional), A115400 (3-dimensional).
Cf. A334279.

Programs

  • PARI
    concat([0,0,0,0], Vec(24*x^4*(1 + 16*x + 126*x^2 + 536*x^3 + 1001*x^4) / (1 - x)^9 + O(x^30))) \\ Colin Barker, Apr 22 2020

Formula

a(n) = n*(n - 1)*(n - 2)*(n - 3)*(465 - 392n + 125n^2 - 18n^3 + n^4).
a(n) = -2790n + 7467n^2 - 7852n^3 + 4300n^4 - 1346n^5 + 244n^6 - 24n^7 + n^8.
From Colin Barker, Apr 22 2020: (Start)
G.f.: 24*x^4*(1 + 16*x + 126*x^2 + 536*x^3 + 1001*x^4) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8.
(End)

A342088 Triangle read by rows: T(n,k) is the number of n-colorings of the vertices of the k-dimensional cross polytope such that no two adjacent vertices have the same color. 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 9, 18, 6, 1, 16, 84, 96, 24, 1, 25, 260, 780, 600, 120, 1, 36, 630, 4080, 7560, 4320, 720, 1, 49, 1302, 15330, 61320, 78120, 35280, 5040, 1, 64, 2408, 45696, 351120, 913920, 866880, 322560, 40320
Offset: 0

Views

Author

Peter Kagey, Feb 27 2021

Keywords

Examples

			Triangle begins:
  n\k| 0   1     2      3       4       5       6       7      8
  ---+----------------------------------------------------------
   0 | 1
   1 | 1,  1
   2 | 1,  4,    2
   3 | 1,  9,   18,     6
   4 | 1, 16,   84,    96,     24
   5 | 1, 25,  260,   780,    600,    120
   6 | 1, 36,  630,  4080,   7560,   4320,    720
   7 | 1, 49, 1302, 15330,  61320,  78120,  35280,   5040
   8 | 1, 64, 2408, 45696, 351120, 913920, 866880, 322560, 40320
		

Crossrefs

Cf. A000012 (k=0), A000290 (k=1), A091940 (k=2), A115400 (k=3), A334281 (k=4), A342073 (k=5), A342074 (k=6), A342075 (k=7).
Cf. A334279.

Programs

  • Mathematica
    T[n_, k_] := Sum[n! k!/((n - k - j)! (k - j)! j!), {j, 0, k}]

Formula

T(n,n) = n!.
T(n,k) = Sum_{i=0..2*k} A334279(k,i)*n^i.
T(n,k) = n*T(n-1,k-1) + n*(n-1)*T(n-2,k-1).
T(n,k) = Sum_{j=0..k} n!k!/((n-k-j)!(k-j)!j!).

A342073 Number of n-colorings of the vertices of the 5-dimensional cross polytope such that no two adjacent vertices have the same color.

Original entry on oeis.org

0, 0, 0, 0, 0, 120, 4320, 78120, 913920, 7575120, 46751040, 224587440, 881591040, 2946869640, 8659691040, 22915652760, 55611279360, 125508233760, 266320172160, 535945217760, 1030028705280, 1901347885080, 3386866301280, 5844714201480, 9803816225280
Offset: 0

Views

Author

Peter Kagey, Feb 27 2021

Keywords

Crossrefs

Analogous for k-dimensional cross polytope: A091940 (k=2), A115400 (k=3), A334281 (k=4), A342074 (k=6), A342075 (k=7)

Programs

  • Mathematica
    p = ChromaticPolynomial[CompleteGraph[Table[2, 5]], x];
    Table[p /. x -> n, {n, 0, 50}]

Formula

a(n) = -205056*n + 593016*n^2 - 698250*n^3 + 448015*n^4 - 175004*n^5 + 43608*n^6 - 6990*n^7 + 700*n^8 - 40*n^9 + n^10.
a(n) = (n - 4)*(n - 3)*(n - 2)*(n - 1)*n*(-8544 + 6909*n - 2240*n^2 + 365*n^3 - 30*n^4 + n^5).
a(n) = Sum_{i=1..10} A334279(5,i)*n^i.
From Chai Wah Wu, Jan 19 2024: (Start)
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n > 10.
G.f.: x^5*(-2170680*x^5 - 1145400*x^4 - 272400*x^3 - 37200*x^2 - 3000*x - 120)/(x - 1)^11. (End)

A342074 Number of n-colorings of the vertices of the 6-dimensional cross polytope such that no two adjacent vertices have the same color.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 720, 35280, 866880, 13849920, 158004000, 1347524640, 8866186560, 46496324160, 201705744240, 748737990000, 2444976293760, 7178449299840, 19276199691840, 47983899216960, 111920569776000, 246727594270080, 517702915311120, 1039979954779920
Offset: 0

Views

Author

Peter Kagey, Feb 27 2021

Keywords

Crossrefs

Analogous for k-dimensional cross polytope: A091940 (k=2), A115400 (k=3), A334281 (k=4), A342073 (k=5), A342075 (k=7).

Programs

  • Mathematica
    p = ChromaticPolynomial[CompleteGraph[Table[2, 6]], x];
    Table[p /. x -> n, {n, 0, 50}]

Formula

a(n) = -22852200*n + 70164670*n^2 - 89812001*n^3 + 64407806*n^4 - 29113410*n^5 + 8790285*n^6 - 1822164*n^7 + 260868*n^8 - 25405*n^9 + 1610*n^10 - 60*n^11 + n^12.
a(n) = (n - 5)*(n - 4)*(n - 3)*(n - 2)*(n - 1)*n*(190435 - 149879*n + 49144*n^2 - 8605*n^3 + 850*n^4 - 45*n^5 + n^6).
a(n) = Sum_{i=1..12} A334279(6,i)*n^i.
From Chai Wah Wu, Jan 19 2024: (Start)
a(n) = 13*a(n-1) - 78*a(n-2) + 286*a(n-3) - 715*a(n-4) + 1287*a(n-5) - 1716*a(n-6) + 1716*a(n-7) - 1287*a(n-8) + 715*a(n-9) - 286*a(n-10) + 78*a(n-11) - 13*a(n-12) + a(n-13) for n > 12.
G.f.: x^6*(-287250480*x^6 - 150137280*x^5 - 35996400*x^4 - 5126400*x^3 - 464400*x^2 - 25920*x - 720)/(x - 1)^13. (End)

A342075 Number of n-colorings of the vertices of the 7-dimensional cross polytope such that no two adjacent vertices have the same color.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 5040, 322560, 10342080, 216518400, 3261535200, 37026823680, 325474269120, 2264594492160, 12789814237200, 60389186457600, 245221330273920, 877374833287680, 2821277454690240, 8284633867238400, 22503569636419200, 57135310310453760
Offset: 0

Views

Author

Peter Kagey, Feb 27 2021

Keywords

Crossrefs

Analogous for k-dimensional cross polytope: A091940 (k=2), A115400 (k=3), A334281 (k=4), A342073 (k=5), A342074 (k=6).

Programs

  • Mathematica
    p = ChromaticPolynomial[CompleteGraph[Table[2, 7]], x];
    Table[p /. x -> n, {n, 0, 50}]

Formula

a(n) = -3597143040*n + 11590795728*n^2 - 15837356724*n^3 + 12355698460*n^4 - 6212542175*n^5 + 2144307578*n^6 - 526197678*n^7 + 93450369*n^8 - 12064836*n^9 + 1122618*n^10 - 73423*n^11 + 3206*n^12 - 84*n^13 + n^14.
a(n) = (n - 6)*(n - 5)*(n - 4)*(n - 3)*(n - 2)*(n - 1)*n*(n^7 - 63 n^6 + 1708 n^5 - 25795 n^4 + 234094 n^3 - 1275281 n^2 + 3858049 n - 4996032).
a(n) = Sum_{i=1..14} A334279(7,i)*n^i.
From Chai Wah Wu, Jan 19 2024: (Start)
a(n) = 15*a(n-1) - 105*a(n-2) + 455*a(n-3) - 1365*a(n-4) + 3003*a(n-5) - 5005*a(n-6) + 6435*a(n-7) - 6435*a(n-8) + 5005*a(n-9) - 3003*a(n-10) + 1365*a(n-11) - 455*a(n-12) + 105*a(n-13) - 15*a(n-14) + a(n-15) for n > 14.
G.f.: x^7*(-52370755920*x^7 - 27190754640*x^6 - 6557740560*x^5 - 959792400*x^4 - 92962800*x^3 - 6032880*x^2 - 246960*x - 5040)/(x - 1)^15. (End)

A334280 Irregular table read by rows: T(n, k) is the coefficient of x^k in the chromatic polynomial of the 1-skeleton of the n-dimensional demihypercube, 0 <= k <= 2^(n-1).

Original entry on oeis.org

0, 1, 0, -1, 1, 0, -6, 11, -6, 1, 0, -2790, 7467, -7852, 4300, -1346, 244, -24, 1, 0, -36586695600, 132041735820, -208601259660, 194243767689, -120509323400, 53195294240, -17371817260, 4296667608, -815202340, 119111090, -13339000, 1127752, -69860, 3000, -80, 1
Offset: 1

Views

Author

Peter Kagey, Apr 22 2020

Keywords

Examples

			n\k| 0     1    2     3    4     5   6   7 8
---+----------------------------------------
  1| 0     1
  2| 0    -1    1
  3| 0    -6   11    -6    1
  4| 0 -2790 7467 -7852 4300 -1346 244 -24 1
		

Crossrefs

Cf. A048994 (simplex), A334278 (hypercube), A334279 (cross-polytope).

Programs

  • Mathematica
    T[n_, k_] := Coefficient[ChromaticPolynomial[GraphData[{"HalvedCube", n}], x], x, k]
Showing 1-7 of 7 results.