A334278
Irregular table read by rows: T(n, k) is the coefficient of x^k in the chromatic polynomial of the cubical graph Q_n, 0 <= k <= 2^n.
Original entry on oeis.org
0, 1, 0, -1, 1, 0, -3, 6, -4, 1, 0, -133, 423, -572, 441, -214, 66, -12, 1, 0, -3040575, 14412776, -31680240, 43389646, -41821924, 30276984, -17100952, 7701952, -2794896, 818036, -191600, 35264, -4936, 496, -32, 1
Offset: 0
Table begins:
n/k| 0 1 2 3 4 5 6 7 8
---+-------------------------------------------
0| 0, 1
1| 0, -1, 1
2| 0, -3, 6, -4, 1
3| 0, -133, 423, -572, 441, -214, 66, -12, 1
Cf.
A296914 is the reverse of row 3.
Cf.
A334279 is analogous for the n-dimensional cross-polytope, the dual of the n-cube.
-
with(GraphTheory): with(SpecialGraphs):
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
ChromaticPolynomial(HypercubeGraph(n), x)):
seq(T(n), n=0..4); # Alois P. Heinz, Jan 14 2025
-
T[n_, k_] := Coefficient[ChromaticPolynomial[HypercubeGraph[n], x], x, k]
A334281
Number of n-colorings of the vertices of the 4-dimensional cross polytope such that no two adjacent vertices have the same color.
Original entry on oeis.org
0, 0, 0, 0, 24, 600, 7560, 61320, 351120, 1515024, 5266800, 15531120, 40308840, 94534440, 204228024, 412284600, 786283680, 1428742560, 2490276960, 4186173024, 6816915000, 10793253240, 16666437480, 25164280680, 37233759024, 54090894000, 77278702800
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Chromatic Polynomial
- Wikipedia, Cross-polytope
- Wikipedia, Turán graph
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
concat([0,0,0,0], Vec(24*x^4*(1 + 16*x + 126*x^2 + 536*x^3 + 1001*x^4) / (1 - x)^9 + O(x^30))) \\ Colin Barker, Apr 22 2020
A342088
Triangle read by rows: T(n,k) is the number of n-colorings of the vertices of the k-dimensional cross polytope such that no two adjacent vertices have the same color. 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 4, 2, 1, 9, 18, 6, 1, 16, 84, 96, 24, 1, 25, 260, 780, 600, 120, 1, 36, 630, 4080, 7560, 4320, 720, 1, 49, 1302, 15330, 61320, 78120, 35280, 5040, 1, 64, 2408, 45696, 351120, 913920, 866880, 322560, 40320
Offset: 0
Triangle begins:
n\k| 0 1 2 3 4 5 6 7 8
---+----------------------------------------------------------
0 | 1
1 | 1, 1
2 | 1, 4, 2
3 | 1, 9, 18, 6
4 | 1, 16, 84, 96, 24
5 | 1, 25, 260, 780, 600, 120
6 | 1, 36, 630, 4080, 7560, 4320, 720
7 | 1, 49, 1302, 15330, 61320, 78120, 35280, 5040
8 | 1, 64, 2408, 45696, 351120, 913920, 866880, 322560, 40320
-
T[n_, k_] := Sum[n! k!/((n - k - j)! (k - j)! j!), {j, 0, k}]
A342073
Number of n-colorings of the vertices of the 5-dimensional cross polytope such that no two adjacent vertices have the same color.
Original entry on oeis.org
0, 0, 0, 0, 0, 120, 4320, 78120, 913920, 7575120, 46751040, 224587440, 881591040, 2946869640, 8659691040, 22915652760, 55611279360, 125508233760, 266320172160, 535945217760, 1030028705280, 1901347885080, 3386866301280, 5844714201480, 9803816225280
Offset: 0
- Peter Kagey, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
p = ChromaticPolynomial[CompleteGraph[Table[2, 5]], x];
Table[p /. x -> n, {n, 0, 50}]
A342074
Number of n-colorings of the vertices of the 6-dimensional cross polytope such that no two adjacent vertices have the same color.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 720, 35280, 866880, 13849920, 158004000, 1347524640, 8866186560, 46496324160, 201705744240, 748737990000, 2444976293760, 7178449299840, 19276199691840, 47983899216960, 111920569776000, 246727594270080, 517702915311120, 1039979954779920
Offset: 0
- Peter Kagey, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
p = ChromaticPolynomial[CompleteGraph[Table[2, 6]], x];
Table[p /. x -> n, {n, 0, 50}]
A342075
Number of n-colorings of the vertices of the 7-dimensional cross polytope such that no two adjacent vertices have the same color.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 5040, 322560, 10342080, 216518400, 3261535200, 37026823680, 325474269120, 2264594492160, 12789814237200, 60389186457600, 245221330273920, 877374833287680, 2821277454690240, 8284633867238400, 22503569636419200, 57135310310453760
Offset: 0
- Peter Kagey, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
-
p = ChromaticPolynomial[CompleteGraph[Table[2, 7]], x];
Table[p /. x -> n, {n, 0, 50}]
A334280
Irregular table read by rows: T(n, k) is the coefficient of x^k in the chromatic polynomial of the 1-skeleton of the n-dimensional demihypercube, 0 <= k <= 2^(n-1).
Original entry on oeis.org
0, 1, 0, -1, 1, 0, -6, 11, -6, 1, 0, -2790, 7467, -7852, 4300, -1346, 244, -24, 1, 0, -36586695600, 132041735820, -208601259660, 194243767689, -120509323400, 53195294240, -17371817260, 4296667608, -815202340, 119111090, -13339000, 1127752, -69860, 3000, -80, 1
Offset: 1
n\k| 0 1 2 3 4 5 6 7 8
---+----------------------------------------
1| 0 1
2| 0 -1 1
3| 0 -6 11 -6 1
4| 0 -2790 7467 -7852 4300 -1346 244 -24 1
-
T[n_, k_] := Coefficient[ChromaticPolynomial[GraphData[{"HalvedCube", n}], x], x, k]
Showing 1-7 of 7 results.
Comments