A267383
Number A(n,k) of acyclic orientations of the Turán graph T(n,k); square array A(n,k), n>=0, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 6, 14, 1, 1, 1, 2, 6, 18, 46, 1, 1, 1, 2, 6, 24, 78, 230, 1, 1, 1, 2, 6, 24, 96, 426, 1066, 1, 1, 1, 2, 6, 24, 120, 504, 2286, 6902, 1, 1, 1, 2, 6, 24, 120, 600, 3216, 15402, 41506, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, 2, ...
1, 4, 6, 6, 6, 6, 6, ...
1, 14, 18, 24, 24, 24, 24, ...
1, 46, 78, 96, 120, 120, 120, ...
1, 230, 426, 504, 600, 720, 720, ...
1, 1066, 2286, 3216, 3720, 4320, 5040, ...
Bisection of column k=2 gives
A048163.
Trisection of column k=3 gives
A370961.
-
A:= proc(n, k) option remember; local b, l, q; q:=-1;
l:= [floor(n/k)$(k-irem(n,k)), ceil(n/k)$irem(n,k)];
b:= proc(n, j) option remember; `if`(j=1, (q-n)^l[1]*
mul(q-i, i=0..n-1), add(b(n+m, j-1)*
Stirling2(l[j], m), m=0..l[j]))
end; forget(b);
abs(b(0, k))
end:
seq(seq(A(n, 1+d-n), n=0..d), d=0..14);
-
A[n_, k_] := A[n, k] = Module[{ b, l, q}, q = -1; l = Join[Array[Floor[n/k] &, k - Mod[n, k]], Array[ Ceiling[n/k] &, Mod[n, k]]]; b[nn_, j_] := b[nn, j] = If[j == 1, (q - nn)^l[[1]]*Product[q - i, {i, 0, nn - 1}], Sum[b[nn + m, j - 1]*StirlingS2[l[[j]], m], {m, 0, l[[j]]}]]; Abs[b[0, k]]]; Table[Table[A[n, 1 + d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
A161131
Number of permutations of {1,2,...,n} that have no odd fixed points.
Original entry on oeis.org
1, 0, 1, 3, 14, 64, 426, 2790, 24024, 205056, 2170680, 22852200, 287250480, 3597143040, 52370755920, 760381337520, 12585067447680, 207863095910400, 3854801333416320, 71370457471716480, 1465957162768492800, 30071395843421184000, 677696237345719468800
Offset: 0
a(3)=3 because we have 312, 231, and 321.
-
d[0] := 1: for n to 25 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: add(d[n-j]*binomial(floor((1/2)*n), j), j = 0 .. floor((1/2)*n)) end proc; seq(a(n), n = 0 .. 22);
a := proc (n) options operator, arrow: add((-1)^j*binomial(ceil((1/2)*n), j)*factorial(n-j), j = 0 .. ceil((1/2)*n)) end proc; seq(a(n), n = 0 .. 22); # Emeric Deutsch, Jul 18 2009
# next Maple program:
a:= proc(n) option remember; `if`(n<4, [1, 0, 1, 3][n+1],
(8*(n-1)*(2*n-5)*a(n-1)+2*(8*n^4-48*n^3+102*n^2-90*n+29)*a(n-2)
-2*(2*n-1)*(n-2)*a(n-3)+(2*n-1)*(2*n-3)*(n-2)*(n-3)*a(n-4))
/(4*(2*n-3)*(2*n-5)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jul 15 2022
a := n -> n!*hypergeom([-ceil(n/2)], [-n], -1):
seq(simplify(a(n)), n = 0..22); # Peter Luschny, Jul 15 2022
-
Table[Sum[(-1)^j*Binomial[Ceiling[n/2], j]*(n-j)!, {j, 0, Ceiling[n/2]}], {n, 0, 30}] (* Vaclav Kotesovec, Feb 18 2017 *)
-
for(n=0, 30, print1(sum(j=0, ceil(n/2), (-1)^j*binomial(ceil(n/2), j)*(n - j)!),", ")) \\ Indranil Ghosh, Mar 08 2017
A161134
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having exactly k even fixed points (0 <= k <= floor(n/2)).
Original entry on oeis.org
1, 1, 1, 1, 4, 2, 14, 8, 2, 78, 36, 6, 426, 234, 54, 6, 3216, 1512, 288, 24, 24024, 12864, 3024, 384, 24, 229080, 108960, 22320, 2400, 120, 2170680, 1145400, 272400, 37200, 3000, 120, 25022880, 11998800, 2563200, 309600, 21600, 720, 287250480
Offset: 0
T(3,0)=4 because we have 132, 312, 213, 231; T(3,1)=2 because we have 123 and 321.
Triangle starts:
1;
1;
1, 1;
4, 2;
14, 8, 2;
78, 36, 6;
426, 234, 54, 6;
-
T := proc (n, k) options operator, arrow: binomial(floor((1/2)*n), k)*add((-1)^j*binomial(floor((1/2)*n)-k, j)*factorial(n-k-j), j = 0 .. floor((1/2)*n)-k) end proc: for n from 0 to 12 do seq(T(n, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
-
Flatten[Table[Binomial[Floor[n/2], k]*Sum[(-1)^j*(n - k - j)!*Binomial[Floor[n/2] - k, j], {j, 0, Floor[n/2] - k}],{n, 0, 12}, {k, 0, Floor[n/2]}]] (* Indranil Ghosh, Mar 08 2017 *)
-
tabf(nn) = { for(n=0, nn, for(k = 0, floor(n/2), print1(binomial(floor(n/2), k) * sum(j=0, floor(n/2) - k, (-1)^j*(n - k - j)! * binomial(floor(n/2) - k, j)),", ");); print();); };
tabf(12); \\ Indranil Ghosh, Mar 08 2017
-
from sympy import factorial, binomial
def T(n,k):
s=0
for j in range(n//2 - k+1):
s+=(-1)**j * factorial(n-k-j) * binomial(n//2 - k, j)
return binomial(n//2, k)* s
i=0
for n in range(26):
for k in range(n//2 + 1):
print(str(i)+" "+str(T(n,k)))
i+=1
# Indranil Ghosh, Mar 08 2017
A187847
Number of permutations p of [n] with p(i) <> i^2.
Original entry on oeis.org
1, 0, 1, 4, 14, 78, 504, 3720, 30960, 256320, 2656080, 30078720, 369774720, 4906137600, 69894316800, 1064341555200, 16190733081600, 279499828608000, 5100017213491200, 98087346669312000, 1983334021853184000, 42063950934061056000, 933754193111900160000
Offset: 0
a(3) = 4: (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).
-
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> `if`(j<>i^2, 1, 0)))):
seq(a(n), n=0..15);
# second Maple program:
a:= n->(p->add((-1)^(j)*binomial(p, j)*(n-j)!, j=0..p))(floor(sqrt(n))):
seq(a(n), n=0..25); # Alois P. Heinz, Nov 02 2014
-
a[n_] := With[{p = Floor[Sqrt[n]]}, Sum[(-1)^j*Binomial[p, j]*(n-j)!, {j, 0, p}]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 25}] (* Jean-François Alcover, Jan 07 2016, adapted from Maple *)
A247978
Number of permutations of [n] that have no prime fixed points.
Original entry on oeis.org
1, 1, 1, 3, 14, 64, 426, 2790, 24024, 229080, 2399760, 25022880, 312273360, 3884393520, 56255149440, 869007242880, 14266826784000, 233845982899200, 4309095479673600, 79300508301907200, 1620482929875532800, 34699018357638835200, 777011144137311283200
Offset: 0
a(2) = 1: 21.
a(3) = 3: 132, 231, 312.
a(4) = 14: 1324, 1342, 1423, 2143, 2314, 2341, 2413, 3124, 3142, 3412, 3421, 4123, 4312, 4321.
-
with(numtheory):
a:= n-> add((-1)^(j)*binomial(pi(n), j)*(n-j)!, j=0..pi(n)):
seq(a(n), n=0..25);
-
a[n_] := Sum[(-1)^j*Binomial[PrimePi[n], j]*(n-j)!, {j, 0, PrimePi[n]}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 26 2017, translated from Maple *)
-
for(n=0, 25, print1(sum(j=0, primepi(n), (-1)^j*binomial(primepi(n), j)*(n - j)!), ", ")) \\ Indranil Ghosh, Mar 08 2017
Showing 1-5 of 5 results.
Comments