A033815
Number of standard permutations of [ a_1..a_n b_1..b_n ] (b_i is not immediately followed by a_i, for all i).
Original entry on oeis.org
1, 1, 14, 426, 24024, 2170680, 287250480, 52370755920, 12585067447680, 3854801333416320, 1465957162768492800, 677696237345719468800, 374281829360322587827200, 243388909697235614324812800, 184070135024053703140543027200, 160192129141963141211280644352000
Offset: 0
- R. P. Stanley, Enumerative Combinatorics I, Chap.2, Exercise 10, p. 89.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..200
- Leo Chao, Paul DesJarlais and John L Leonard, A binomial identity, via derangements, Math. Gaz. 89 (2005), 268-270.
- Ira Gessel, Enumerative applications of symmetric functions, Séminaire Lotharingien de Combinatoire, B17a (1987), 17 pp.
-
a033815 n = a116854 (2 * n + 1) (n + 1)
-- Reinhard Zumkeller, Aug 31 2014
-
A033815 := proc(n) local i; add(binomial(n, i)*(-1)^i*(2*n - i)!, i = 0 .. n) end;
# second Maple program:
A:= proc(n, k) A(n, k):= `if`(k=0, n!, A(n+1, k-1) -A(n, k-1)) end:
a:= n-> A(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Feb 22 2019
-
a[n_] := (2n)!*Hypergeometric1F1[-n, -2n, -1]; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jun 13 2012, after Vladimir Reshetnikov *)
A266695
Number of acyclic orientations of the Turán graph T(n,2).
Original entry on oeis.org
1, 1, 2, 4, 14, 46, 230, 1066, 6902, 41506, 329462, 2441314, 22934774, 202229266, 2193664790, 22447207906, 276054834902, 3216941445106, 44222780245622, 578333776748674, 8787513806478134, 127464417117501586, 2121181056663291350, 33800841048945424546
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..475
- Beáta Bényi and Peter Hajnal, Combinatorics of poly-Bernoulli numbers, arXiv:1510.05765 [math.CO], 2015; Studia Scientiarum Mathematicarum Hungarica, Vol. 52, No. 4 (2015), 537-558, DOI:10.1556/012.2015.52.4.1325.
- P. J. Cameron, C. A. Glass, and R. U. Schumacher, Acyclic orientations and poly-Bernoulli numbers, arXiv:1412.3685 [math.CO], 2014-2018.
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Wikipedia, Turán graph
-
a:= n-> (p-> add(Stirling2(n-p+1, i+1)*Stirling2(p+1, i+1)*
i!^2, i=0..p))(iquo(n, 2)):
seq(a(n), n=0..25);
-
a[n_] := With[{q=Quotient[n, 2]}, Sum[StirlingS2[n-q+1, i+1] StirlingS2[ q+1, i+1] i!^2, {i, 0, q}]];
Array[a, 24, 0] (* Jean-François Alcover, Nov 06 2018 *)
A370961
a(n) = number of acyclic orientations of the complete tripartite graph K_{n,n,n}.
Original entry on oeis.org
1, 6, 426, 122190, 90768378, 138779942046, 379578822373866, 1689637343582548590, 11434884125767376107098, 111765072808554847704145086, 1515592947854931941485836600906, 27609710924806869786487193747541390, 658043992934027491354757341987635993018
Offset: 0
A372254
Number A(n,k) of acyclic orientations of the complete tripartite graph K_{n,n,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 6, 14, 1, 18, 78, 230, 1, 54, 426, 1902, 6902, 1, 162, 2286, 15402, 76110, 329462, 1, 486, 12090, 122190, 822954, 4553166, 22934774, 1, 1458, 63198, 951546, 8724078, 61796298, 381523758, 2193664790, 1, 4374, 327306, 7290942, 90768378, 823457454, 6241779786, 42700751022, 276054834902
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
2, 6, 18, 54, 162, 486, ...
14, 78, 426, 2286, 12090, 63198, ...
230, 1902, 15402, 122190, 951546, 7290942, ...
6902, 76110, 822954, 8724078, 90768378, 928340190, ...
329462, 4553166, 61796298, 823457454, 10779805722, 138779942046, ...
- Alois P. Heinz, Rows n = 0..140, flattened
- Don Knuth, Parades and poly-Bernoulli bijections, Mar 31 2024. See (19.2).
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Acyclic orientation
- Wikipedia, Multipartite graph
-
g:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; local q, l, b; q, l, b:= -1, [n$2, k],
proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
(q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
end; abs(b(0, 3))
end:
seq(seq(A(n, d-n), n=0..d), d=0..9);
-
g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n-j]]*Binomial[n-1, j-1], {j, 1, n}]];
A[n_, k_] := A[n, k] = Module[{q, l, b}, {q, l} = {-1, {n, n, k}}; b[n0_, j_] := b[n0, j] = If[j == 1, Product[q-i, {i, 0, n0-1}]*(q-n0)^l[[1]], Sum[b[n0 + m, j-1]*Coefficient[g[l[[j]]], x, m], {m, 0, l[[j]]}]]; Abs[b[0, 3]]];
Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 9}] // Flatten (* Jean-François Alcover, Apr 25 2024, after Alois P. Heinz *)
A372326
Number A(n,k) of acyclic orientations of the Turán graph T(k*n,n); square array A(n,k), n>=0, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 14, 6, 1, 1, 1, 230, 426, 24, 1, 1, 1, 6902, 122190, 24024, 120, 1, 1, 1, 329462, 90768378, 165392664, 2170680, 720, 1, 1, 1, 22934774, 138779942046, 4154515368024, 457907248920, 287250480, 5040, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
1, 2, 14, 230, 6902, ...
1, 6, 426, 122190, 90768378, ...
1, 24, 24024, 165392664, 4154515368024, ...
1, 120, 2170680, 457907248920, 495810323060597880, ...
- Alois P. Heinz, Antidiagonals n = 0..42, flattened
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Acyclic orientation
- Wikipedia, Multipartite graph
- Wikipedia, Turán graph
-
g:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; local q, l, b; q, l, b:= -1, [k$n, 0],
proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
(q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
end; abs(b(0, nops(l)))
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
A[n_, k_] := A[n, k] = Module[{q = -1, l, b}, l = Append[Table[k, {n}], 0];
b[nn_, j_] := b[nn, j] = If[j == 1, Product[q - i, {i, 0, nn - 1}]*
(q - nn)^l[[1]], Sum[b[nn + m, j - 1]*Coefficient[g[l[[j]]], x, m],
{m, 0, l[[j]]}]];
Abs[b[0, Length[l]]]];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jun 09 2024, after Alois P. Heinz *)
A161132
Number of permutations of {1,2,...,n} that have no even fixed points.
Original entry on oeis.org
1, 1, 1, 4, 14, 78, 426, 3216, 24024, 229080, 2170680, 25022880, 287250480, 3884393520, 52370755920, 812752093440, 12585067447680, 220448163358080, 3854801333416320, 75225258805132800, 1465957162768492800, 31537353006189676800, 677696237345719468800
Offset: 0
a(3)=4 because we have 132, 312, 213, and 231.
-
d[0] := 1: for n to 25 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: add(d[n-j]*binomial(ceil((1/2)*n), j), j = 0 .. ceil((1/2)*n)) end proc: seq(a(n), n = 0 .. 22);
a := proc (n) options operator, arrow: add((-1)^j*binomial(floor((1/2)*n), j)*factorial(n-j), j = 0 .. floor((1/2)*n)) end proc; seq(a(n), n = 0 .. 22); # Emeric Deutsch, Jul 18 2009
a := n -> n!*hypergeom([-floor(n/2)], [-n], -1):
seq(simplify(a(n)), n = 0..22); # Peter Luschny, Jul 15 2022
-
a[n_] := Sum[Subfactorial[n-j]*Binomial[Ceiling[n/2], j], {j, 0, Ceiling[ n/2]}]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 19 2017 *)
-
for (n=0, 30, print1(sum(j=0, floor(n/2), (-1)^j*binomial(floor(n/2),j)*(n - j)!),", ")) \\ Indranil Ghosh, Mar 08 2017
-
import math
f=math.factorial
def C(n, r): return f(n)/ f(r)/ f(n - r)
def A161132(n):
s=0
for j in range(0, (n/2)+1):
s += (-1)**j*C(n/2, j)*f(n - j)
return s # Indranil Ghosh, Mar 08 2017
A372261
Number T(n,k,j) of acyclic orientations of the complete tripartite graph K_{n,k,j}; triangle of triangles T(n,k,j), n>=0, k=0..n, j=0..k, read by rows.
Original entry on oeis.org
1, 1, 2, 6, 1, 4, 18, 14, 78, 426, 1, 8, 54, 46, 330, 2286, 230, 1902, 15402, 122190, 1, 16, 162, 146, 1374, 12090, 1066, 10554, 101502, 951546, 6902, 76110, 822954, 8724078, 90768378, 1, 32, 486, 454, 5658, 63198, 4718, 57054, 657210, 7290942, 41506, 525642, 6495534, 78463434, 928340190
Offset: 0
Triangle of triangles T(n,k,j) begins:
1;
;
1;
2, 6;
;
1;
4, 18;
14, 78, 426;
;
1;
8, 54;
46, 330, 2286;
230, 1902, 15402, 122190;
;
...
- Alois P. Heinz, Rows n = 0..40, flattened
- Don Knuth, Parades and poly-Bernoulli bijections, Mar 31 2024. See (19.2).
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Acyclic orientation
- Wikipedia, Multipartite graph
T(n,k,0) for k=0..9 give:
A000012,
A000079,
A027649,
A027650,
A027651,
A283811,
A283812,
A283813,
A284032,
A284033.
-
g:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
end:
T:= proc() option remember; local q, l, b; q, l, b:= -1, [args],
proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
(q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
end; abs(b(0, nops(l)))
end:
seq(seq(seq(T(n, k, j), j=0..k), k=0..n), n=0..5);
-
g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
T[n_, k_, j_] := T[n, k, j] = Module[{q = -1, l = {n, k, j}, b},
b[n0_, j0_] := b[n0, j0] = If[j0 == 1, Product[q - i, {i, 0, n0 - 1}]*
(q - n0)^n, Sum[b[n0 + m, j0 - 1]*Coefficient[g[l[[j0]]], x, m],
{m, 0, l[[j0]]}]];
Abs[b[0, 3]]];
Table[Table[Table[T[n, k, j], {j, 0, k}], {k, 0, n}], {n, 0, 5}] // Flatten (* Jean-François Alcover, Jun 14 2024, after Alois P. Heinz *)
A266858
Number of acyclic orientations of the Turán graph T(n,3).
Original entry on oeis.org
1, 1, 2, 6, 18, 78, 426, 2286, 15402, 122190, 951546, 8724078, 90768378, 928340190, 10779805722, 138779942046, 1759271695338, 24739709631678, 379578822373866, 5743346972756526, 94864142045862282, 1689637343582548590, 29717468115957434586, 563879701735681033998
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..465
- P. J. Cameron, C. A. Glass, R. U. Schumacher, Acyclic orientations and poly-Bernoulli numbers, arXiv:1412.3685 [math.CO], 2014-2018.
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Turán graph
-
A[n_, k_] := A[n, k] = Module[{b, l, q}, q = -1; l = Join[Array[Floor[ n/k]&, k - Mod[n, k]], Array[Ceiling[n/k]&, Mod[n, k]]]; b[nn_, j_] := b[nn, j] = If[j==1, (q-nn)^l[[1]] Product[q-i, {i, 0, nn-1}], Sum[b[nn + m, j-1] StirlingS2[l[[j]], m], {m, 0, l[[j]]}]]; Abs[b[0, k]]];
a[n_] := A[n, 3];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Aug 20 2018, after Alois P. Heinz *)
A370613
Total number of acyclic orientations in all complete multipartite graphs K_lambda, where lambda ranges over all partitions of n into distinct parts.
Original entry on oeis.org
1, 1, 1, 5, 9, 63, 509, 2959, 22453, 247949, 3080991, 28988331, 407320739, 5122243495, 82583577967, 1430027615585, 22556817627789, 395098668828675, 7979894546677853, 154786744386253387, 3355612019167352821, 78865333300205585345, 1769663675666499515751
Offset: 0
-
g:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
end:
b:= proc(t, n, i) option remember; `if`(i*(i+1)/2 abs(b(0, n$2)):
seq(a(n), n=0..22);
A370614
Triangle T(n,k) in which row n lists in increasing order the number of acyclic orientations of complete multipartite graphs K_lambda, where lambda is a partition of n into distinct parts; triangle T(n,k), n>=0, k = 1..A000009(n), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 8, 1, 16, 46, 1, 32, 146, 330, 1, 64, 454, 1066, 1374, 1, 128, 1394, 4718, 5658, 10554, 1, 256, 4246, 20266, 23118, 41506, 57054, 101502, 1, 512, 12866, 85310, 93930, 237686, 302730, 525642, 657210, 1165104, 1, 1024, 38854, 354106, 380094
Offset: 0
Triangle T(n,k) begins:
1;
1;
1;
1, 4;
1, 8;
1, 16, 46;
1, 32, 146, 330;
1, 64, 454, 1066, 1374;
1, 128, 1394, 4718, 5658, 10554;
1, 256, 4246, 20266, 23118, 41506, 57054, 101502;
...
-
g:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
end:
h:= proc() option remember; local q, l, b; q, l, b:= -1, args,
proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
(q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
end; abs(b(0, nops(l)))
end:
b:= proc(n, i, l) `if`(i*(i+1)/2 sort(b(n$2, [0]))[]:
seq(T(n), n=0..12);
Showing 1-10 of 20 results.
Comments