A099594
Array read by antidiagonals: poly-Bernoulli numbers B(-k,n).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 14, 8, 1, 1, 16, 46, 46, 16, 1, 1, 32, 146, 230, 146, 32, 1, 1, 64, 454, 1066, 1066, 454, 64, 1, 1, 128, 1394, 4718, 6902, 4718, 1394, 128, 1, 1, 256, 4246, 20266, 41506, 41506, 20266, 4246, 256, 1, 1, 512, 12866, 85310, 237686, 329462, 237686, 85310, 12866, 512, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 4, 8, 16, 32, ...
1, 4, 14, 46, 146, 454, ...
1, 8, 46, 230, 1066, 4718, ...
1, 16, 146, 1066, 6902, 41506, ...
1, 32, 454, 4718, 41506, 329462, ...
...
- Alois P. Heinz, Rows n = 0..140, flattened
- Arvind Ayyer and Beáta Bényi, Toppling on permutations with an extra chip, arXiv:2104.13654 [math.CO], 2021. See Table 1 (a) p. 4.
- Beáta Bényi, Advances in Bijective Combinatorics, Ph. D. Dissertation, Doctoral School of Mathematics and Computer Science, University of Szeged, Bolyai Institute, 2014. See Table 1.
- Beáta Bényi and Peter Hajnal, Combinatorics of poly-Bernoulli numbers, arXiv:1510.05765 [math.CO], 2015.
- Beata Bényi and Peter Hajnal, Combinatorial properties of poly-Bernoulli relatives, arXiv preprint arXiv:1602.08684 [math.CO], 2016.
- Beata Benyi and Peter Hajnal, Poly-Bernoulli Numbers and Eulerian Numbers, arXiv:1804.01868 [math.CO], 2018.
- Beáta Bényi and Matthieu Josuat-Vergès, Combinatorial proof of an identity on Genocchi numbers, arXiv:2010.10060 [math.CO], 2020.
- Beáta Bényi and Gábor V. Nagy, Bijective enumerations of Γ-free 0-1 matrices, arXiv:1707.06899 [math.CO], 2017.
- Beáta Bényi and José Luis Ramírez, On q-poly-Bernoulli numbers arising from combinatorial interpretations, arXiv:1909.09949 [math.CO], 2019.
- Beáta Bényi and José Luis Ramírez, Poly-Cauchy numbers - the combinatorics behind, arXiv:2105.04791 [math.CO], 2021.
- Beáta Bényi and José Luis Ramírez, Poly-Cauchy Numbers of the Second Kind-the Combinatorics Behind, Enumerative Comb. Appl. (2022) Vol. 2, No. 1, Art. #S2R1.
- Chad Brewbaker, A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues, INTEGERS Vol. 8 (2008), #A02.
- David Callan, Permutations whose excedance positions are those before 1
- Frédéric Chapoton and Vincent Pilaud, Shuffles of deformed permutahedra, multiplihedra, constrainahedra, and biassociahedra, arXiv:2201.06896 [math.CO], 2022. See p. 12.
- Peter G. Jeavons and Martin C. Cooper, Tractable constraints on ordered domains, Artificial Intelligence 79 (1995), 327-339.
- Hyeong-Kwan Ju and Seunghyun Seo, Enumeration of (0,1)-matrices avoiding some 2 X 2 matrices, Discrete Math., 312 (2012), 2473-2481.
- Ken Kamano, Lonesum decomposable matrices, arXiv:1701.07157 [math.CO], 2017.
- Masanobu Kaneko, Poly-Bernoulli numbers, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
- Anatol N. Kirillov, On some quadratic algebras. I 1/2: Combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 002, 172 p. (2016).
- Don Knuth, Parades and poly-Bernoulli bijections, Mar 31 2024. See (0.1).
- D. E. Knuth, Notes on four arrays of numbers arising from the enumeration of CRC constraints and min-and-max-closed constraints, May 06 2024. Mentions this sequence.
- Stéphane Launois, Combinatorics of H-primes in quantum matrices, Journal of Algebra, Volume 309, Issue 1, 2007, Pages 139-167.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- H. A. Witek, G. Mos and C.-P. Chou, Zhang-Zhang Polynomials of Regular 3-and 4-tier Benzenoid Strips, MATCH Commun. Math. Comput. Chem. 73 (2015) 427-442.
- Wikipedia, Acyclic orientation
-
A:= (n, k)-> add(Stirling2(n+1, i+1)*Stirling2(k+1, i+1)*
i!^2, i=0..min(n, k)):
seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Jan 02 2016
-
T[n_, k_] := Sum[(-1)^(j+n)*(1+j)^k*j!*StirlingS2[n, j], {j, 0, n}]; Table[ T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 30 2016 *)
-
T(n,k)=sum(j=0,n,(j+1)^k*sum(i=0,j,(-1)^(n+j-i)*binomial(j,i)*(j-i)^n))
-
T(n,k)=sum(j=0,min(n,k), j!^2*stirling(n+1, j+1, 2)*stirling(k+1, j+1, 2)); \\ Michel Marcus, Mar 05 2017
A267383
Number A(n,k) of acyclic orientations of the Turán graph T(n,k); square array A(n,k), n>=0, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 6, 14, 1, 1, 1, 2, 6, 18, 46, 1, 1, 1, 2, 6, 24, 78, 230, 1, 1, 1, 2, 6, 24, 96, 426, 1066, 1, 1, 1, 2, 6, 24, 120, 504, 2286, 6902, 1, 1, 1, 2, 6, 24, 120, 600, 3216, 15402, 41506, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, 2, ...
1, 4, 6, 6, 6, 6, 6, ...
1, 14, 18, 24, 24, 24, 24, ...
1, 46, 78, 96, 120, 120, 120, ...
1, 230, 426, 504, 600, 720, 720, ...
1, 1066, 2286, 3216, 3720, 4320, 5040, ...
Bisection of column k=2 gives
A048163.
Trisection of column k=3 gives
A370961.
-
A:= proc(n, k) option remember; local b, l, q; q:=-1;
l:= [floor(n/k)$(k-irem(n,k)), ceil(n/k)$irem(n,k)];
b:= proc(n, j) option remember; `if`(j=1, (q-n)^l[1]*
mul(q-i, i=0..n-1), add(b(n+m, j-1)*
Stirling2(l[j], m), m=0..l[j]))
end; forget(b);
abs(b(0, k))
end:
seq(seq(A(n, 1+d-n), n=0..d), d=0..14);
-
A[n_, k_] := A[n, k] = Module[{ b, l, q}, q = -1; l = Join[Array[Floor[n/k] &, k - Mod[n, k]], Array[ Ceiling[n/k] &, Mod[n, k]]]; b[nn_, j_] := b[nn, j] = If[j == 1, (q - nn)^l[[1]]*Product[q - i, {i, 0, nn - 1}], Sum[b[nn + m, j - 1]*StirlingS2[l[[j]], m], {m, 0, l[[j]]}]]; Abs[b[0, k]]]; Table[Table[A[n, 1 + d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
A048163
a(n) = Sum_{k=1..n} ((k-1)!)^2*Stirling2(n,k)^2.
Original entry on oeis.org
1, 2, 14, 230, 6902, 329462, 22934774, 2193664790, 276054834902, 44222780245622, 8787513806478134, 2121181056663291350, 611373265185174628502, 207391326125004608457782, 81791647413265571604175094, 37109390748309009878392597910, 19192672725746588045912535407702
Offset: 1
1
1 + 1 = 2
1 + 9 + 4 = 14
1 + 49 + 144 + 36 = 230
1 + 225 + 2500 + 3600 + 576 = 6902
... - _Philippe Deléham_, May 30 2015
- Lovasz, L. and Vesztergombi, K.; Restricted permutations and Stirling numbers. Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, pp. 731-738, Colloq. Math. Soc. Janos Bolyai, 18, North-Holland, Amsterdam-New York, 1978.
- K. Vesztergombi, Permutations with restriction of middle strength, Stud. Sci. Math. Hungar., 9 (1974), 181-185.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Chad Brewbaker, A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues, INTEGERS Vol. 8 (2008), #A02.
- Peter G. Jeavons and Martin C. Cooper, Tractable constraints on ordered domains, Artificial Intelligence 79 (1995), 327-339.
- Hyeong-Kwan Ju and Seunghyun Seo, Enumeration of (0,1)-matrices avoiding some 2 X 2 matrices, Discrete Math., 312 (2012), 2473-2481.
- Ken Kamano, Lonesum decomposable matrices, arXiv:1701.07157 [math.CO], 2017.
- H.-K. Kim et al., Poly-Bernoulli numbers and lonesum matrices, arXiv:1103.4884 [math.CO], 2011.
- Anatol N. Kirillov, On some quadratic algebras. I 1/2: Combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 002, 172 p. (2016).
-
Table[Sum[((k-1)!)^2*StirlingS2[n,k]^2,{k,1,n}],{n,1,20}] (* Vaclav Kotesovec, Jun 21 2013 *)
-
a(n)=if(n<1, 0, polcoeff(sum(m=1, n, m^(m-1)*(m-1)!*x^m/prod(k=1, m-1, 1+m*k*x+x*O(x^n))), n)) \\ Paul D. Hanna, Jan 05 2013
for(n=1,20,print1(a(n),", "))
-
Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)
a(n)=sum(k=1,n,(-1)^(n-k)*k^(n-1)*(k-1)!*Stirling2(n-1, k-1))
for(n=1, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 06 2013
-
a(n) = sum(k=1, n, (k-1)!^2*stirling(n,k,2)^2); \\ Michel Marcus, Jun 22 2018
A212084
Triangle T(n,k), n>=0, 0<=k<=2n, read by rows: row n gives the coefficients of the chromatic polynomial of the complete bipartite graph K_(n,n), highest powers first.
Original entry on oeis.org
1, 1, -1, 0, 1, -4, 6, -3, 0, 1, -9, 36, -75, 78, -31, 0, 1, -16, 120, -524, 1400, -2236, 1930, -675, 0, 1, -25, 300, -2200, 10650, -34730, 75170, -102545, 78610, -25231, 0, 1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, 5552680, -6796926, 4787174
Offset: 0
3 example graphs: +-----------+
. o o o o o o |
. | |\ /| |\ /|\ /|\ /
. | | X | | X | X | X
. | |/ \| |/ \|/ \|/ \
. o o o o o o |
. +-----------+
Graph: K_(1,1) K_(2,2) K_(3,3)
Vertices: 2 4 6
Edges: 1 4 9
The complete bipartite graph K_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
1;
1, -1, 0;
1, -4, 6, -3, 0;
1, -9, 36, -75, 78, -31, 0;
1, -16, 120, -524, 1400, -2236, 1930, -675, ...
1, -25, 300, -2200, 10650, -34730, 75170, -102545, ...
1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, ...
...
Row sums and last elements of rows give:
A000007.
Sums of absolute values of row elements give:
A048163(n+1).
-
P:= n-> add(Stirling2(n, k) *mul(q-i, i=0..k-1) *(q-k)^n, k=0..n):
T:= n-> seq(coeff(P(n), q, 2*n-k), k=0..2*n):
seq(T(n), n=1..8);
A188634
E.g.f.: Sum_{n>=0} (1 - exp(-(n+1)*x))^n/(n+1).
Original entry on oeis.org
1, 1, 4, 46, 1066, 41506, 2441314, 202229266, 22447207906, 3216941445106, 578333776748674, 127464417117501586, 33800841048945424546, 10617398393395844992306, 3898852051843774954576834, 1654948033478889053351543506, 804119629083230641164978005986
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 46*x^3/3! + 1066*x^4/4! + 41506*x^5/5! +...
where
A(x) = 1 + (1-exp(-2*x))/2 + (1-exp(-3*x))^2/3 + (1-exp(-4*x))^3/4 + (1-exp(-5*x))^4/5 + (1-exp(-6*x))^5/6 +...
-
Table[Sum[(-1)^(k+n)*(k+1)^(n-1)*k!*StirlingS2[n, k],{k,0,n}],{n,0,20}]
Table[n!*SeriesCoefficient[Sum[(1-E^(-x*(k+1)))^k/(k+1),{k,0,n}],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 30 2012 *)
-
{a(n)=n!*polcoeff(sum(k=0, n, (1-exp(-(k+1)*x+x*O(x^n)))^k/(k+1)), n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n)=sum(j=0,n, (j+1)^(n-1)*sum(i=0,j, (-1)^(n+j-i)*binomial(j,i)*(j-i)^n))}
for(n=0, 20, print1(a(n), ", "))
A212085
Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the complete bipartite graph K_(k,k).
Original entry on oeis.org
0, 0, 2, 0, 2, 6, 0, 2, 18, 12, 0, 2, 42, 84, 20, 0, 2, 90, 420, 260, 30, 0, 2, 186, 1812, 2420, 630, 42, 0, 2, 378, 7332, 18500, 9750, 1302, 56, 0, 2, 762, 28884, 127220, 121590, 30702, 2408, 72, 0, 2, 1530, 112740, 825860, 1324470, 583422, 81032, 4104, 90
Offset: 1
A(3,1) = 6 because there are 6 3-colorings of the complete bipartite graph K_(1,1): 1-2, 1-3, 2-1, 2-3, 3-1, 3-2.
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, ...
2, 2, 2, 2, 2, 2, 2, ...
6, 18, 42, 90, 186, 378, 762, ...
12, 84, 420, 1812, 7332, 28884, 112740, ...
20, 260, 2420, 18500, 127220, 825860, 5191220, ...
30, 630, 9750, 121590, 1324470, 13284630, 126657750, ...
-
A:= (n, k)-> add(Stirling2(k, j) *mul(n-i, i=0..j-1) *(n-j)^k, j=1..k):
seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
-
a[n_, k_] := Sum[(-1)^j*(n-j)^k*Pochhammer[-n, j]*StirlingS2[k, j], {j, 1, k}]; Table[a[n-k, k], {n, 1, 11}, {k, n-1, 1, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)
A266858
Number of acyclic orientations of the Turán graph T(n,3).
Original entry on oeis.org
1, 1, 2, 6, 18, 78, 426, 2286, 15402, 122190, 951546, 8724078, 90768378, 928340190, 10779805722, 138779942046, 1759271695338, 24739709631678, 379578822373866, 5743346972756526, 94864142045862282, 1689637343582548590, 29717468115957434586, 563879701735681033998
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..465
- P. J. Cameron, C. A. Glass, R. U. Schumacher, Acyclic orientations and poly-Bernoulli numbers, arXiv:1412.3685 [math.CO], 2014-2018.
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Turán graph
-
A[n_, k_] := A[n, k] = Module[{b, l, q}, q = -1; l = Join[Array[Floor[ n/k]&, k - Mod[n, k]], Array[Ceiling[n/k]&, Mod[n, k]]]; b[nn_, j_] := b[nn, j] = If[j==1, (q-nn)^l[[1]] Product[q-i, {i, 0, nn-1}], Sum[b[nn + m, j-1] StirlingS2[l[[j]], m], {m, 0, l[[j]]}]]; Abs[b[0, k]]];
a[n_] := A[n, 3];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Aug 20 2018, after Alois P. Heinz *)
A266972
Triangle T(n,k), n>=0, 0<=k<=n, read by rows: row n gives the coefficients of the chromatic polynomial of the (n,2)-Turán graph, highest powers first.
Original entry on oeis.org
1, 1, 0, 1, -1, 0, 1, -2, 1, 0, 1, -4, 6, -3, 0, 1, -6, 15, -17, 7, 0, 1, -9, 36, -75, 78, -31, 0, 1, -12, 66, -202, 351, -319, 115, 0, 1, -16, 120, -524, 1400, -2236, 1930, -675, 0, 1, -20, 190, -1080, 3925, -9164, 13186, -10489, 3451, 0, 1, -25, 300, -2200, 10650, -34730, 75170, -102545, 78610, -25231, 0
Offset: 0
Triangle T(n,k) begins:
1;
1, 0;
1, -1, 0;
1, -2, 1, 0;
1, -4, 6, -3, 0;
1, -6, 15, -17, 7, 0;
1, -9, 36, -75, 78, -31, 0;
1, -12, 66, -202, 351, -319, 115, 0;
1, -16, 120, -524, 1400, -2236, 1930, -675, 0;
...
-
P:= n-> (h-> expand(add(Stirling2(h, j)*mul(q-i,
i=0..j-1)*(q-j)^(n-h), j=0..h)))(iquo(n, 2)):
T:= n-> (p-> seq(coeff(p, q, n-i), i=0..n))(P(n)):
seq(T(n), n=0..12);
Showing 1-8 of 8 results.
Comments