A263791 Number of permutations of [n] avoiding the generalized patterns 1(k+2)-(u_1+1)-...-(u_k+1) for all permutations u of [k].
1, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 2, 6, 14, 1, 1, 2, 6, 22, 42, 1, 1, 2, 6, 24, 92, 132, 1, 1, 2, 6, 24, 114, 420, 429, 1, 1, 2, 6, 24, 120, 612, 2042, 1430, 1, 1, 2, 6, 24, 120, 696, 3600, 10404, 4862, 1, 1, 2, 6, 24, 120, 720, 4512, 22680, 54954, 16796, 1, 1, 2, 6, 24, 120, 720, 4920, 31920, 150732, 298648, 58786, 1, 1, 2, 6, 24, 120, 720, 5040, 37200, 242160, 1045440
Offset: 1
Examples
Table a(n,k) begins (row index n >= 1, column index k >= 0): 1 1 1 1 1 1 1 1 1 1 ... 1 2 2 2 2 2 2 2 2 2 ... 1 5 6 6 6 6 6 6 6 6 ... 1 14 22 24 24 24 24 24 24 24 ... 1 42 92 114 120 120 120 120 120 120 ... 1 132 420 612 696 720 720 720 720 720 ... 1 429 2042 3600 4512 4920 5040 5040 5040 5040 ... 1 1430 10404 22680 31920 37200 39600 40320 40320 40320 ... 1 4862 54954 150732 242160 305280 341280 357840 362880 362880 ... 1 16796 298648 1045440 1942800 2680800 3175200 3457440 3588480 3628800 ... ..........................................................................
Links
- V. Pilaud, Brick polytopes, lattice quotients, and Hopf algebras, arXiv:1505.07665 [math.CO], 2015.
Comments