cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A220181 E.g.f.: Sum_{n>=0} (1 - exp(-n*x))^n.

Original entry on oeis.org

1, 1, 7, 115, 3451, 164731, 11467387, 1096832395, 138027417451, 22111390122811, 4393756903239067, 1060590528331645675, 305686632592587314251, 103695663062502304228891, 40895823706632785802087547, 18554695374154504939196298955, 9596336362873294022956267703851
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2012

Keywords

Comments

Compare to the trivial identity: exp(x) = Sum_{n>=0} (1 - exp(-x))^n.
Compare to the e.g.f. of A092552: Sum_{n>=1} (1 - exp(-n*x))^n/n.
From Arvind Ayyer, Oct 25 2020: (Start)
a(n) is also the number of acyclic orientations with unique sink of the complete bipartite graph K_{n,n+1}
a(n) is also the number of toppleable permutations in S_{2n}. A toppleable permutation pi in S_{2n} satisfies pi_i <= n-1+i for 1 <= i <= n+1 and pi_i >= i-n for n+2 <= i <= 2n. (End)
Conjecture: Let p be prime. The sequence obtained by reducing a(n) modulo p for n >= 1 is purely periodic with period p - 1. For example, modulo 7 the sequence becomes [1, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 1 ...], with an apparent period of 6. Cf. A122399. - Peter Bala, Jun 01 2022

Examples

			O.g.f.: F(x) = 1 + x + 7*x^2 + 115*x^3 + 3451*x^4 + 164731*x^5 +...
where F(x) = 1 + x/(1+x) + 2^2*2!*x^2/((1+2*1*x)*(1+2*2*x)) + 3^3*3!*x^3/((1+3*1*x)*(1+3*2*x)*(1+3*3*x)) + 4^4*4!*x^4/((1+4*1*x)*(1+4*2*x)*(1+4*3*x)*(1+4*4*x)) +...
...
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 115*x^3/3! + 3451*x^4/4! + 164731*x^5/5! +...
where the e.g.f. satisfies the identities:
(1) A(x) = 1 + (1-exp(-x)) + (1-exp(-2*x))^2 + (1-exp(-3*x))^3 + (1-exp(-4*x))^4 + (1-exp(-5*x))^5 + (1-exp(-6*x))^6 +...
(2) A(x) = exp(-x) + exp(-2*x)*(1-exp(-2*x)) + exp(-3*x)*(1-exp(-3*x))^2 + exp(-4*x)*(1-exp(-4*x))^3 + exp(-5*x)*(1-exp(-5*x))^4 + exp(-6*x)*(1-exp(-6*x))^5 +...
(3) 2*A(x) = 2 + (1-exp(-2*x)) + (1-exp(-3*x))^2 + (1-exp(-4*x))^3 + (1-exp(-5*x))^4 + (1-exp(-6*x))^5 + (1-exp(-7*x))^6 +...
E.g.f. at offset=1 begins:
B(x) = x + x^2/2! + 7*x^3/3! + 115*x^4/4! + 3451*x^5/5! + 164731*x^6/6! +...
where
B(x) = (1-exp(-x)) + (1-exp(-2*x))^2/2^2 + (1-exp(-3*x))^3/3^2 + (1-exp(-4*x))^4/4^2 + (1-exp(-5*x))^5/5^2 + (1-exp(-6*x))^6/6^2 +...
The series  B(x) = Sum_{n>=1} (1 - exp(-n*x))^n / n^2  may be rewritten as:
B(x) = Pi^2/6 + log(1-exp(-x)) + Sum_{n>=2} (n-1)*exp(-2*n*x)/(2*n) -
Sum_{n>=3} C(n-1,2)*exp(-3*n*x)/(3*n) + Sum_{n>=4} C(n-1,3)*exp(-4*n*x)/(4*n) -+...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[(-1)^(n-k)*k^n*k!*StirlingS2[n,k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jun 21 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m^m*m!*x^m/prod(k=1,m,1+m*k*x+x*O(x^n))),n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, (1-exp(-k*x+x*O(x^n)))^k), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Formula for this sequence with offset=1: */
    {a(n)=n!*polcoeff(sum(k=1, n, (1-exp(-k*x+x*O(x^n)))^k/k^2), n)}
    for(n=1, 21, print1(a(n), ", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = sum(k=0,n,(-1)^(n-k)*k^n*k!*Stirling2(n, k))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = if(n==0,1,sum(k=1,n+1,((k-1)!)^2*Stirling2(n+1,k)^2/2))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0,n, k^n*sum(j=0,k, (-1)^(n+k-j)*binomial(k,j)*(k-j)^n))}
    for(n=0, 20, print1(a(n), ", "))

Formula

O.g.f. Sum_{n>=0} n^n * n! * x^n / Product_{k=1..n} (1 + n*k*x).
E.g.f. A(x) = Sum_{n>=0} (1 - exp(-n*x))^n satisfies the identities:
(1) A(x) = Sum_{n>=1} exp(-n*x) * (1 - exp(-n*x))^(n-1).
(2) A(x) = 1 + (1/2) * Sum_{n>=1} (1 - exp(-n*x))^(n-1).
(3) A(x) = Sum_{n>=1} Sum_{k>=0} (-1)^k * C(n+k-1,k) * exp(-k*(n+k-1)*x).
E.g.f. at offset 1, B(x) = Sum_{n>=1} a(n-1)*x^n/n!, satisfies:
(1) B(x) = Sum_{n>=1} (1 - exp(-n*x))^n / n^2.
(2) B(x) = Pi^2/6 + log(1-exp(-x)) + Sum_{k>=2} Sum_{n>=k} (-1)^k * C(n-1,k-1) * exp(-k*n*x)/(k*n), a convergent series for x>0.
a(n) = Sum_{k=0..n} (-1)^(n-k) * k^n * k! * Stirling2(n,k).
a(n) = Sum_{k=1..n+1} ((k-1)!)^2 * Stirling2(n+1,k)^2 / 2 for n>0 with a(0)=1.
a(n) = Sum_{k=0..n} k^n * Sum_{j=0..k} (-1)^(n+k-j) * binomial(k,j) * (k-j)^n.
a(n) = A048163(n+1)/2 for n>0.
Limit n->infinity (a(n)/n!)^(1/n)/n = 1/(exp(1)*(log(2))^2) = 0.7656928576... - Vaclav Kotesovec, Jun 21 2013
a(n) ~ sqrt(Pi) * n^(2*n+1/2) / (sqrt(1-log(2)) * exp(2*n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, May 13 2014

A099594 Array read by antidiagonals: poly-Bernoulli numbers B(-k,n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 14, 8, 1, 1, 16, 46, 46, 16, 1, 1, 32, 146, 230, 146, 32, 1, 1, 64, 454, 1066, 1066, 454, 64, 1, 1, 128, 1394, 4718, 6902, 4718, 1394, 128, 1, 1, 256, 4246, 20266, 41506, 41506, 20266, 4246, 256, 1, 1, 512, 12866, 85310, 237686, 329462, 237686, 85310, 12866, 512, 1
Offset: 0

Views

Author

Ralf Stephan, Oct 27 2004

Keywords

Comments

B_n^{(-k)} is the number of distinct n by k "lonesum matrices" where a matrix of entries 0 or 1 is called lonesum when it is uniquely reconstructible from its row and column sums. [Brewbaker]
B_n^{(-k)} is the cardinality of the set { sigma in S_{n+k}: -k <= i-sigma(i) <= n for all i=1,2,...,n+k }. [Launois]
T(n,k) is also the number of permutations on [n+k] in which each substring whose support belongs to {1, 2, ..., n} or {n+1, n+2, ..., n+k} is increasing. For example, with n = 2 and k = 3, the permutation 41532 does not qualify because the substring 53 has support in {n+1, n+2, ..., n+k} = {3,4,5} but is not increasing. T(2,1) = 4 counts 123, 132, 231, 312 while the permutations satisfying Launois' condition above are 123, 132, 213, 231. A bijection between these sets of permutations would be interesting. - David Callan, Jul 22 2008. (Corrected by Norman Do, Sep 01 2008)
T(n,k) is also the number of acyclic orientations of the complete bipartite graph K_{n,k}. - Vincent Pilaud, Sep 15 2020
When indexed as a triangular array, T(n,k) is the number of permutations of [n] in which 1 is in position k and the excedance entries are precisely the entries to the left of 1. See link. - David Callan, Dec 12 2021
T(n,k) is also the number of max-closed relations between an ordered n-element set and an ordered k-element set (see the paper by Jeavons and Cooper 1995). - Don Knuth, Feb 12 2024

Examples

			Square array begins:
  1,  1,   1,    1,     1,      1, ...
  1,  2,   4,    8,    16,     32, ...
  1,  4,  14,   46,   146,    454, ...
  1,  8,  46,  230,  1066,   4718, ...
  1, 16, 146, 1066,  6902,  41506, ...
  1, 32, 454, 4718, 41506, 329462, ...
  ...
		

Crossrefs

Main diagonal is A048163. Another diagonal is A188634.
Antidiagonal sums are in A098830.

Programs

  • Maple
    A:= (n, k)-> add(Stirling2(n+1, i+1)*Stirling2(k+1, i+1)*
                 i!^2, i=0..min(n, k)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Jan 02 2016
  • Mathematica
    T[n_, k_] := Sum[(-1)^(j+n)*(1+j)^k*j!*StirlingS2[n, j], {j, 0, n}]; Table[ T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 30 2016 *)
  • PARI
    T(n,k)=sum(j=0,n,(j+1)^k*sum(i=0,j,(-1)^(n+j-i)*binomial(j,i)*(j-i)^n))
    
  • PARI
    T(n,k)=sum(j=0,min(n,k), j!^2*stirling(n+1, j+1, 2)*stirling(k+1, j+1, 2)); \\ Michel Marcus, Mar 05 2017

Formula

pB(k, n) = (-1)^n * Sum[i=0..n, (-1)^i * i! * Stirling2(n, i) / (i+1)^k ].
E.g.f.: e^(x+y) / [e^x + e^y - e^(x+y)].
T(n, k) = Sum_{j=0..n} (j+1)^k*Sum_{i=0..j} (-1)^(n+j-i)*C(j, i)*(j-i)^n. - Paul D. Hanna, Nov 04 2004
n-th row of the array = row sums of n-th power of triangle A210381. - Gary W. Adamson, Mar 21 2012

A267383 Number A(n,k) of acyclic orientations of the Turán graph T(n,k); square array A(n,k), n>=0, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 6, 14, 1, 1, 1, 2, 6, 18, 46, 1, 1, 1, 2, 6, 24, 78, 230, 1, 1, 1, 2, 6, 24, 96, 426, 1066, 1, 1, 1, 2, 6, 24, 120, 504, 2286, 6902, 1, 1, 1, 2, 6, 24, 120, 600, 3216, 15402, 41506, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 13 2016

Keywords

Comments

An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.
Conjecture: In general, column k > 1 is asymptotic to n! / ((k-1) * (1 - log(k/(k-1)))^((k-1)/2) * k^n * (log(k/(k-1)))^(n+1)). - Vaclav Kotesovec, Feb 18 2017

Examples

			Square array A(n,k) begins:
  1,    1,    1,    1,    1,    1,    1, ...
  1,    1,    1,    1,    1,    1,    1, ...
  1,    2,    2,    2,    2,    2,    2, ...
  1,    4,    6,    6,    6,    6,    6, ...
  1,   14,   18,   24,   24,   24,   24, ...
  1,   46,   78,   96,  120,  120,  120, ...
  1,  230,  426,  504,  600,  720,  720, ...
  1, 1066, 2286, 3216, 3720, 4320, 5040, ...
		

Crossrefs

Main diagonal gives A000142.
A(2n,n) gives A033815.
A(n,ceiling(n/2)) gives A161132.
Bisection of column k=2 gives A048163.
Trisection of column k=3 gives A370961.
a(n^2,n) gives A372084.

Programs

  • Maple
    A:= proc(n, k) option remember; local b, l, q; q:=-1;
           l:= [floor(n/k)$(k-irem(n,k)), ceil(n/k)$irem(n,k)];
           b:= proc(n, j) option remember; `if`(j=1, (q-n)^l[1]*
                 mul(q-i, i=0..n-1), add(b(n+m, j-1)*
                 Stirling2(l[j], m), m=0..l[j]))
               end; forget(b);
           abs(b(0, k))
        end:
    seq(seq(A(n, 1+d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := A[n, k] = Module[{ b, l, q}, q = -1; l = Join[Array[Floor[n/k] &, k - Mod[n, k]], Array[ Ceiling[n/k] &, Mod[n, k]]]; b[nn_, j_] := b[nn, j] = If[j == 1, (q - nn)^l[[1]]*Product[q - i, {i, 0, nn - 1}], Sum[b[nn + m, j - 1]*StirlingS2[l[[j]], m], {m, 0, l[[j]]}]]; Abs[b[0, k]]]; Table[Table[A[n, 1 + d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)

A306209 Number A(n,k) of permutations of [n] within distance k of a fixed permutation; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 6, 5, 1, 1, 1, 2, 6, 14, 8, 1, 1, 1, 2, 6, 24, 31, 13, 1, 1, 1, 2, 6, 24, 78, 73, 21, 1, 1, 1, 2, 6, 24, 120, 230, 172, 34, 1, 1, 1, 2, 6, 24, 120, 504, 675, 400, 55, 1, 1, 1, 2, 6, 24, 120, 720, 1902, 2069, 932, 89, 1, 1, 1, 2, 6, 24, 120, 720, 3720, 6902, 6404, 2177, 144, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 29 2019

Keywords

Comments

A(n,k) counts permutations p of [n] such that |p(j)-j| <= k for all j in [n].

Examples

			A(4,1) = 5: 1234, 1243, 1324, 2134, 2143.
A(5,2) = 31: 12345, 12354, 12435, 12453, 12534, 12543, 13245, 13254, 13425, 13524, 14235, 14253, 14325, 14523, 21345, 21354, 21435, 21453, 21534, 21543, 23145, 23154, 24135, 24153, 31245, 31254, 31425, 31524, 32145, 32154, 34125.
Square array A(n,k) begins:
  1,  1,   1,    1,    1,     1,     1,     1,     1, ...
  1,  1,   1,    1,    1,     1,     1,     1,     1, ...
  1,  2,   2,    2,    2,     2,     2,     2,     2, ...
  1,  3,   6,    6,    6,     6,     6,     6,     6, ...
  1,  5,  14,   24,   24,    24,    24,    24,    24, ...
  1,  8,  31,   78,  120,   120,   120,   120,   120, ...
  1, 13,  73,  230,  504,   720,   720,   720,   720, ...
  1, 21, 172,  675, 1902,  3720,  5040,  5040,  5040, ...
  1, 34, 400, 2069, 6902, 17304, 30960, 40320, 40320, ...
		

Crossrefs

Rows n=1-2 give: A000012, A040000.
Main diagonal gives A000142.
A(2n,n) gives A048163(n+1).
A(2n+1,n) gives A092552(n+1).
A(n,floor(n/2)) gives A306267.
A(n+2,n) gives A001564.
Cf. A130152.

Programs

  • Mathematica
    A[0, _] = 1;
    A[n_ /; n > 0, k_] := A[n, k] = Permanent[Table[If[Abs[i - j] <= k, 1, 0], {i, 1, n}, {j, 1, n}]];
    Table[A[n - k, k], {n, 0, 12}, {k, n, 0, -1 }] // Flatten (* Jean-François Alcover, Oct 18 2021, after Alois P. Heinz in A130152 *)

Formula

A(n,k) = Sum_{j=0..k} A130152(n,j) for n > 0, A(0,k) = 1.

A266695 Number of acyclic orientations of the Turán graph T(n,2).

Original entry on oeis.org

1, 1, 2, 4, 14, 46, 230, 1066, 6902, 41506, 329462, 2441314, 22934774, 202229266, 2193664790, 22447207906, 276054834902, 3216941445106, 44222780245622, 578333776748674, 8787513806478134, 127464417117501586, 2121181056663291350, 33800841048945424546
Offset: 0

Views

Author

Alois P. Heinz, Jan 02 2016

Keywords

Comments

The Turán graph T(n,2) is also the complete bipartite graph K_{floor(n/2),ceiling(n/2)}.
An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.

Crossrefs

Column k=2 of A267383.
Bisections give A048163 (even part), A188634 (odd part).

Programs

  • Maple
    a:= n-> (p-> add(Stirling2(n-p+1, i+1)*Stirling2(p+1, i+1)*
             i!^2, i=0..p))(iquo(n, 2)):
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := With[{q=Quotient[n, 2]}, Sum[StirlingS2[n-q+1, i+1] StirlingS2[ q+1, i+1] i!^2, {i, 0, q}]];
    Array[a, 24, 0] (* Jean-François Alcover, Nov 06 2018 *)

Formula

a(n) = Sum_{i=0..floor(n/2)} i!^2 * Stirling2(ceiling(n/2)+1,i+1) * Stirling2(floor(n/2)+1,i+1).
a(n) = A099594(floor(n/2),ceiling(n/2)).
a(n) = Sum_{k=0..n} abs(A266972(n,k)).
a(n) ~ n! / (sqrt(1-log(2)) * 2^n * (log(2))^(n+1)). - Vaclav Kotesovec, Feb 18 2017

A372254 Number A(n,k) of acyclic orientations of the complete tripartite graph K_{n,n,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 6, 14, 1, 18, 78, 230, 1, 54, 426, 1902, 6902, 1, 162, 2286, 15402, 76110, 329462, 1, 486, 12090, 122190, 822954, 4553166, 22934774, 1, 1458, 63198, 951546, 8724078, 61796298, 381523758, 2193664790, 1, 4374, 327306, 7290942, 90768378, 823457454, 6241779786, 42700751022, 276054834902
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2024

Keywords

Comments

An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.

Examples

			Square array A(n,k) begins:
       1,       1,        1,         1,           1,            1, ...
       2,       6,       18,        54,         162,          486, ...
      14,      78,      426,      2286,       12090,        63198, ...
     230,    1902,    15402,    122190,      951546,      7290942, ...
    6902,   76110,   822954,   8724078,    90768378,    928340190, ...
  329462, 4553166, 61796298, 823457454, 10779805722, 138779942046, ...
		

Crossrefs

Rows n=0-2 give: A000012, A008776, A370960.
Column k=0 gives A048163(n+1).
Main diagonal gives A370961.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
        end:
    A:= proc(n, k) option remember; local q, l, b; q, l, b:= -1, [n$2, k],
          proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
            (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
          end; abs(b(0, 3))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..9);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n-j]]*Binomial[n-1, j-1], {j, 1, n}]];
    A[n_, k_] := A[n, k] = Module[{q, l, b}, {q, l} = {-1, {n, n, k}}; b[n0_, j_] := b[n0, j] = If[j == 1, Product[q-i, {i, 0, n0-1}]*(q-n0)^l[[1]], Sum[b[n0 + m, j-1]*Coefficient[g[l[[j]]], x, m], {m, 0, l[[j]]}]]; Abs[b[0, 3]]];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 9}] // Flatten (* Jean-François Alcover, Apr 25 2024, after Alois P. Heinz *)

A372326 Number A(n,k) of acyclic orientations of the Turán graph T(k*n,n); square array A(n,k), n>=0, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 14, 6, 1, 1, 1, 230, 426, 24, 1, 1, 1, 6902, 122190, 24024, 120, 1, 1, 1, 329462, 90768378, 165392664, 2170680, 720, 1, 1, 1, 22934774, 138779942046, 4154515368024, 457907248920, 287250480, 5040, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 27 2024

Keywords

Comments

The Turán graph T(k*n,n) is the complete n-partite graph K_{k,...,k}.
An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.

Examples

			Square array A(n,k) begins:
  1,   1,       1,            1,                  1, ...
  1,   1,       1,            1,                  1, ...
  1,   2,      14,          230,               6902, ...
  1,   6,     426,       122190,           90768378, ...
  1,  24,   24024,    165392664,      4154515368024, ...
  1, 120, 2170680, 457907248920, 495810323060597880, ...
		

Crossrefs

Columns k=0-2 give: A000012, A000142, A033815.
Rows n=0+1,2-3 give: A000012, A048163(k+1), A370961.
Main diagonal gives A372084.
Cf. A267383.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
        end:
    A:= proc(n, k) option remember; local q, l, b; q, l, b:= -1, [k$n, 0],
          proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
            (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
          end; abs(b(0, nops(l)))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
    A[n_, k_] := A[n, k] = Module[{q = -1, l, b}, l = Append[Table[k, {n}], 0];
       b[nn_, j_] := b[nn, j] = If[j == 1, Product[q - i, {i, 0, nn - 1}]*
       (q - nn)^l[[1]], Sum[b[nn + m, j - 1]*Coefficient[g[l[[j]]], x, m],
       {m, 0, l[[j]]}]];
       Abs[b[0, Length[l]]]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jun 09 2024, after Alois P. Heinz *)

Formula

A(n,k) = A267383(k*n,n).

A014235 Number of n X n matrices with entries 0 and 1 and no 2 X 2 submatrix of form [ 1 1; 1 0 ].

Original entry on oeis.org

1, 2, 12, 128, 2100, 48032, 1444212, 54763088, 2540607060, 140893490432, 9170099291892, 690117597121328, 59318536757456340, 5763381455631211232, 627402010180980401652, 75942075645205885599248, 10153054354133705795859540, 1490544499134409408040599232
Offset: 0

Views

Author

Keywords

Examples

			For n = 2 the 12 matrices are all the 2 X 2 0-1 matrices except
[1 1]  [1 0]  [0 1]  [1 1]
[1 0], [1 1], [1 1], [0 1]. - _Robert Israel_, Feb 19 2015
		

Crossrefs

Row sums of A334689.

Programs

  • Maple
    f:= n -> add(k!*combinat:-stirling2(n+1,k+1)^2, k = 0 .. n):
    seq(f(n),n=0..30); # Robert Israel, Feb 19 2015
  • Mathematica
    Table[Sum[StirlingS2[n+1, k+1]^2k!, {k, 0, n}], {n, 0, 100}] (* Emanuele Munarini, Jul 04 2011 *)
  • Maxima
    makelist(sum(stirling2(n+1, k+1)^2*k!, k, 0, n), n, 0, 24); /* Emanuele Munarini, Jul 04 2011 */
    
  • PARI
    a(n) = sum(k=0, n, k! * stirling(n+1, k+1, 2)^2); \\ Michel Marcus, Feb 21 2015

Formula

a(n) = Sum_{k=0..n} k! * Stirling2(n+1, k+1)^2.

Extensions

a(0)=1 added by Emanuele Munarini, Jul 04 2011

A212084 Triangle T(n,k), n>=0, 0<=k<=2n, read by rows: row n gives the coefficients of the chromatic polynomial of the complete bipartite graph K_(n,n), highest powers first.

Original entry on oeis.org

1, 1, -1, 0, 1, -4, 6, -3, 0, 1, -9, 36, -75, 78, -31, 0, 1, -16, 120, -524, 1400, -2236, 1930, -675, 0, 1, -25, 300, -2200, 10650, -34730, 75170, -102545, 78610, -25231, 0, 1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, 5552680, -6796926, 4787174
Offset: 0

Views

Author

Alois P. Heinz, Apr 30 2012

Keywords

Comments

The complete bipartite graph K_(n,n) has 2n vertices and n^2 = A000290(n) edges. The chromatic polynomial of K_(n,n) has 2n+1 = A005408(n) coefficients.

Examples

			3 example graphs:                     +-----------+
.                 o        o   o      o   o   o   |
.                 |        |\ /|      |\ /|\ /|\ /
.                 |        | X |      | X | X | X
.                 |        |/ \|      |/ \|/ \|/ \
.                 o        o   o      o   o   o   |
.                                     +-----------+
Graph:         K_(1,1)    K_(2,2)      K_(3,3)
Vertices:         2          4            6
Edges:            1          4            9
The complete bipartite graph K_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
  1;
  1,  -1,   0;
  1,  -4,   6,    -3,     0;
  1,  -9,  36,   -75,    78,     -31,       0;
  1, -16, 120,  -524,  1400,   -2236,    1930,     -675, ...
  1, -25, 300, -2200, 10650,  -34730,   75170,  -102545, ...
  1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, ...
  ...
		

Crossrefs

Columns k=0-2 give: A000012, (-1)*A000290, A083374.
Row sums and last elements of rows give: A000007.
Row lengths give: A005408.
Sums of absolute values of row elements give: A048163(n+1).
T(n,2n-1) = (-1)*A092552(n).

Programs

  • Maple
    P:= n-> add(Stirling2(n, k) *mul(q-i, i=0..k-1) *(q-k)^n, k=0..n):
    T:= n-> seq(coeff(P(n), q, 2*n-k), k=0..2*n):
    seq(T(n), n=1..8);

Formula

T(n,k) = [q^(2n-k)] Sum_{j=0..n} (q-j)^n * S2(n,j) * Product_{i=0..j-1} (q-i).

Extensions

T(0,0)=1 prepended by Alois P. Heinz, May 03 2024

A372261 Number T(n,k,j) of acyclic orientations of the complete tripartite graph K_{n,k,j}; triangle of triangles T(n,k,j), n>=0, k=0..n, j=0..k, read by rows.

Original entry on oeis.org

1, 1, 2, 6, 1, 4, 18, 14, 78, 426, 1, 8, 54, 46, 330, 2286, 230, 1902, 15402, 122190, 1, 16, 162, 146, 1374, 12090, 1066, 10554, 101502, 951546, 6902, 76110, 822954, 8724078, 90768378, 1, 32, 486, 454, 5658, 63198, 4718, 57054, 657210, 7290942, 41506, 525642, 6495534, 78463434, 928340190
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2024

Keywords

Comments

An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.

Examples

			Triangle of triangles T(n,k,j) begins:
    1;
  ;
    1;
    2,    6;
  ;
    1;
    4,   18;
   14,   78,   426;
  ;
    1;
    8,   54;
   46,  330,  2286;
  230, 1902, 15402, 122190;
  ;
  ...
		

Crossrefs

T(n,n,n) gives A370961.
T(n,n,0) gives A048163(n+1).
T(n+1,n,0) gives A188634(n+1).
T(n,1,1) gives A008776.
T(n,2,2) gives A370960.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
        end:
    T:= proc() option remember; local q, l, b; q, l, b:= -1, [args],
          proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
            (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
          end; abs(b(0, nops(l)))
        end:
    seq(seq(seq(T(n, k, j), j=0..k), k=0..n), n=0..5);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
    T[n_, k_, j_] := T[n, k, j] = Module[{q = -1, l = {n, k, j}, b},
       b[n0_, j0_] := b[n0, j0] = If[j0 == 1, Product[q - i, {i, 0, n0 - 1}]*
       (q - n0)^n, Sum[b[n0 + m, j0 - 1]*Coefficient[g[l[[j0]]], x, m],
       {m, 0, l[[j0]]}]];
    Abs[b[0, 3]]];
    Table[Table[Table[T[n, k, j], {j, 0, k}], {k, 0, n}], {n, 0, 5}] // Flatten (* Jean-François Alcover, Jun 14 2024, after Alois P. Heinz *)
Showing 1-10 of 17 results. Next