A122399
a(n) = Sum_{k=0..n} k^n * k! * Stirling2(n,k).
Original entry on oeis.org
1, 1, 9, 211, 9285, 658171, 68504709, 9837380491, 1863598406805, 450247033371451, 135111441590583909, 49300373690091496171, 21495577955682021043125, 11037123350952586270549531, 6591700149366720366704735109
Offset: 0
E.g.f.: A(x) = 1 + x + 9*x^2/2! + 211*x^3/3! + 9285*x^4/4! + 658171*x^5/5! + ...
such that
A(x) = 1 + (exp(x)-1) + (exp(2*x)-1)^2 + (exp(3*x)-1)^3 + (exp(4*x)-1)^4 + ...
The e.g.f. is also given by the series:
A(x) = 1/2 + exp(x)/(1+exp(x))^2 + exp(4*x)/(1+exp(2*x))^3 + exp(9*x)/(1+exp(3*x))^4 + exp(16*x)/(1+exp(4*x))^5 + exp(25*x)/(1+exp(5*x))^6 + ...
or, equivalently,
A(x) = 1/2 + exp(-x)/(1+exp(-x))^2 + exp(-2*x)/(1+exp(-2*x))^3 + exp(-3*x)/(1+exp(-3*x))^4 + exp(-4*x)/(1+exp(-4*x))^5 + exp(-5*x)/(1+exp(-5*x))^6 + ...
-
a := n -> add(k^n*k!*combinat[stirling2](n,k),k=0..n); # Max Alekseyev, Feb 01 2007
-
Flatten[{1,Table[Sum[k^n*k!*StirlingS2[n,k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jun 21 2013 *)
-
{a(n)=polcoeff(sum(m=0, n, m^m*m!*x^m/prod(k=1, m, 1-m*k*x+x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 05 2013
-
{a(n)=n!*polcoeff(sum(k=0, n, (exp(k*x +x*O(x^n)) - 1)^k), n)}
for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Oct 26 2014
-
/* From e.g.f. infinite series: */
\p100 \\ set precision
{A=Vec(serlaplace(sum(n=0, 500, 1.*exp(n^2*x +O(x^26))/(1 + exp(n*x +O(x^26)))^(n+1)) ))}
for(n=0, #A-1, print1(round(A[n+1]), ", ")) \\ Paul D. Hanna, Oct 30 2014
A048163
a(n) = Sum_{k=1..n} ((k-1)!)^2*Stirling2(n,k)^2.
Original entry on oeis.org
1, 2, 14, 230, 6902, 329462, 22934774, 2193664790, 276054834902, 44222780245622, 8787513806478134, 2121181056663291350, 611373265185174628502, 207391326125004608457782, 81791647413265571604175094, 37109390748309009878392597910, 19192672725746588045912535407702
Offset: 1
1
1 + 1 = 2
1 + 9 + 4 = 14
1 + 49 + 144 + 36 = 230
1 + 225 + 2500 + 3600 + 576 = 6902
... - _Philippe Deléham_, May 30 2015
- Lovasz, L. and Vesztergombi, K.; Restricted permutations and Stirling numbers. Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, pp. 731-738, Colloq. Math. Soc. Janos Bolyai, 18, North-Holland, Amsterdam-New York, 1978.
- K. Vesztergombi, Permutations with restriction of middle strength, Stud. Sci. Math. Hungar., 9 (1974), 181-185.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Chad Brewbaker, A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues, INTEGERS Vol. 8 (2008), #A02.
- Peter G. Jeavons and Martin C. Cooper, Tractable constraints on ordered domains, Artificial Intelligence 79 (1995), 327-339.
- Hyeong-Kwan Ju and Seunghyun Seo, Enumeration of (0,1)-matrices avoiding some 2 X 2 matrices, Discrete Math., 312 (2012), 2473-2481.
- Ken Kamano, Lonesum decomposable matrices, arXiv:1701.07157 [math.CO], 2017.
- H.-K. Kim et al., Poly-Bernoulli numbers and lonesum matrices, arXiv:1103.4884 [math.CO], 2011.
- Anatol N. Kirillov, On some quadratic algebras. I 1/2: Combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 002, 172 p. (2016).
-
Table[Sum[((k-1)!)^2*StirlingS2[n,k]^2,{k,1,n}],{n,1,20}] (* Vaclav Kotesovec, Jun 21 2013 *)
-
a(n)=if(n<1, 0, polcoeff(sum(m=1, n, m^(m-1)*(m-1)!*x^m/prod(k=1, m-1, 1+m*k*x+x*O(x^n))), n)) \\ Paul D. Hanna, Jan 05 2013
for(n=1,20,print1(a(n),", "))
-
Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)
a(n)=sum(k=1,n,(-1)^(n-k)*k^(n-1)*(k-1)!*Stirling2(n-1, k-1))
for(n=1, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 06 2013
-
a(n) = sum(k=1, n, (k-1)!^2*stirling(n,k,2)^2); \\ Michel Marcus, Jun 22 2018
A229234
O.g.f.: Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 - n*k*x).
Original entry on oeis.org
1, 1, 3, 19, 189, 2671, 50253, 1203679, 35548509, 1263153631, 52973381853, 2581493517439, 144317666200029, 9156299509121311, 653254398215833053, 51995430120141924799, 4585316010326597014749, 445304380297565009962591, 47368550666889620425580253, 5492643630110295899167573759
Offset: 0
O.g.f.: A(x) = 1 + x + 3*x^2 + 19*x^3 + 189*x^4 + 2671*x^5 + 50253*x^6 +...
where
A(x) = 1 + x/(1-x) + 2!*x^2/((1-2*1*x)*(1-2*2*x)) + 3!*x^3/((1-3*1*x)*(1-3*2*x)*(1-3*3*x)) + 4!*x^4/((1-4*1*x)*(1-4*2*x)*(1-4*3*x)*(1-4*4*x)) +...
Exponential Generating Function.
E.g.f.: E(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 189*x^4/4! + 2671*x^5/5! +...
where
E(x) = 1 + (exp(x)-1) + (exp(2*x)-1)^2/2^2 + (exp(3*x)-1)^3/3^3 + (exp(4*x)-1)^4/4^4 + (exp(5*x)-1)^5/5^5 +...
-
Flatten[{1,Table[Sum[k^(n-k) * k! * StirlingS2[n, k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
-
{a(n)=polcoeff(sum(m=0,n,m!*x^m/prod(k=1,m,1-m*k*x +x*O(x^n))),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=n!*polcoeff(sum(m=0,n,(exp(m*x+x*O(x^n))-1)^m/m^m),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=sum(k=0, n, k^(n-k) * k! * stirling(n, k, 2))}
for(n=0,30,print1(a(n),", "))
A229260
O.g.f.: Sum_{n>=0} n! * n^(2*n) * x^n / Product_{k=1..n} (1 - n^2*k*x).
Original entry on oeis.org
1, 1, 33, 4759, 1812645, 1432421311, 2033196095973, 4707913008727279, 16598602853910799125, 84603008117292025844671, 598699398082553327852353413, 5694542805400507375406964870799, 70891082687197321771955383523878005, 1129717853570486718325946169950885995231
Offset: 0
O.g.f.: A(x) = 1 + x + 33*x^2 + 4759*x^3 + 1812645*x^4 + 1432421311*x^5 +...
where
A(x) = 1 + x/(1-x) + 2!*2^4*x^2/((1-2^2*1*x)*(1-2^2*2*x)) + 3!*3^6*x^3/((1-3^2*1*x)*(1-3^2*2*x)*(1-3^2*3*x)) + 4!*4^8*x^4/((1-4^2*1*x)*(1-4^2*2*x)*(1-4^2*3*x)*(1-4^2*4*x)) +...
Exponential Generating Function.
E.g.f.: E(x) = 1 + x + 33*x^2/2! + 4759*x^3/3! + 1812645*x^4/4! +...
where
E(x) = 1 + (exp(x)-1) + (exp(4*x)-1)^2 + (exp(9*x)-1)^3 + (exp(16*x)-1)^4 + (exp(25*x)-1)^5 + (exp(36*x)-1)^6 + (exp(49*x)-1)^7 +...
-
Flatten[{1,Table[Sum[k^(2*n) * k! * StirlingS2[n,k], {k,0,n}], {n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
-
{a(n)=polcoeff(sum(m=0,n,m!*m^(2*m)*x^m/prod(k=1,m,1-m^2*k*x +x*O(x^n))),n)}
for(n=0,20,print1(a(n),", "))
-
{a(n)=n!*polcoeff(sum(m=0,n,(exp(m^2*x+x*O(x^n))-1)^m),n)}
for(n=0,20,print1(a(n),", "))
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n)=sum(k=0, n, k^(2*n) * k! * Stirling2(n, k))}
for(n=0,20,print1(a(n),", "))
A229261
O.g.f.: Sum_{n>=0} n^(2*n) * x^n / Product_{k=1..n} (1 - n^2*k*x).
Original entry on oeis.org
1, 1, 17, 922, 106695, 21742971, 6977367418, 3273755821827, 2129976884025085, 1846718792259030760, 2068516760060790309349, 2919795339100534415091143, 5088912154987483773753872912, 10766599670032172748225017763021, 27254500086981764567988714050736205
Offset: 0
O.g.f.: A(x) = 1 + x + 17*x^2 + 922*x^3 + 106695*x^4 + 21742971*x^5 +...
where
A(x) = 1 + x/(1-x) + 2^4*x^2/((1-2^2*1*x)*(1-2^2*2*x)) + 3^6*x^3/((1-3^2*1*x)*(1-3^2*2*x)*(1-3^2*3*x)) + 4^8*x^4/((1-4^2*1*x)*(1-4^2*2*x)*(1-4^2*3*x)*(1-4^2*4*x)) +...
Exponential Generating Function.
E.g.f.: E(x) = 1 + x + 17*x^2/2! + 922*x^3/3! + 106695*x^4/4! +...
where
E(x) = 1 + (exp(x)-1) + (exp(4*x)-1)^2/2! + (exp(9*x)-1)^3/3! + (exp(16*x)-1)^4/4! + (exp(25*x)-1)^5/5! + (exp(36*x)-1)^6/6! +...
-
Flatten[{1,Table[Sum[k^(2*n) * StirlingS2[n, k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
-
{a(n)=polcoeff(sum(m=0,n,m^(2*m)*x^m/prod(k=1,m,1-m^2*k*x +x*O(x^n))),n)}
for(n=0,20,print1(a(n),", "))
-
{a(n)=n!*polcoeff(sum(m=0,n,(exp(m^2*x+x*O(x^n))-1)^m/m!),n)}
for(n=0,20,print1(a(n),", "))
-
{a(n)=sum(k=0, n, k^(2*n) * stirling(n, k, 2))}
for(n=0,20,print1(a(n),", "))
A338040
E.g.f.: Sum_{j>=0} 4^j * (exp(j*x) - 1)^j.
Original entry on oeis.org
1, 4, 132, 11140, 1763076, 449262724, 168055179012, 86720706877060, 59029852191779076, 51241585497612147844, 55245853646893977682692, 72423868722672448652558980, 113447698393867318106045295876, 209271794145089904620369489016964
Offset: 0
-
Flatten[{1, Table[Sum[4^j * j^n * j! * StirlingS2[n, j], {j, 0, n}], {n, 1, 20}]}]
nmax = 20; CoefficientList[Series[1 + Sum[4^j*(Exp[j*x] - 1)^j, {j, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
-
{a(n)=local(X=x+x*O(x^n)); n!*polcoeff(sum(m=0, n, 4^m*(exp(m*X)-1)^m), n)}
A224899
E.g.f.: Sum_{n>=0} sinh(n*x)^n.
Original entry on oeis.org
1, 1, 8, 163, 6272, 389581, 35560448, 4479975823, 744707981312, 157897753198201, 41585725184933888, 13318468253704790683, 5097100004294081380352, 2297277197389011910783621, 1204339195916670860817072128, 726625952070893090583192860743
Offset: 0
E.g.f.: A(x) = 1 + x + 8*x^2/2! + 163*x^3/3! + 6272*x^4/4! +...
where
A(x) = 1 + sinh(x) + sinh(2*x)^2 + sinh(3*x)^3 + sinh(4*x)^4 +...
Cf.
A122399,
A249489,
A245322,
A220181,
A221077,
A221078,
A198513,
A220181,
A249459,
A195415,
A245322,
A338040.
-
Flatten[{1,Table[Sum[Sum[Binomial[k,j] * (-1)^j * k^n*(k-2*j)^n / 2^k,{j,0,k}],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Oct 29 2014 *)
Join[{1},Rest[With[{nn=20},CoefficientList[Series[Sum[Sinh[n*x]^n,{n,nn}],{x,0,nn}],x] Range[0,nn]!]]] (* Harvey P. Dale, May 18 2018 *)
-
{a(n)=n!*polcoeff(sum(k=0, n, sinh(k*x+x*O(x^n))^k), n)}
for(n=0, 20, print1(a(n), ", "))
A229233
O.g.f.: Sum_{n>=0} x^n / Product_{k=1..n} (1 - n*k*x).
Original entry on oeis.org
1, 1, 2, 8, 48, 387, 4043, 52425, 819346, 15133184, 324769270, 7986143453, 222514878501, 6958782341565, 242274294115558, 9324382604206368, 394282071192289024, 18218582054356563951, 915480348188869318723, 49812603754178905560085, 2923492374797360684715882
Offset: 0
O.g.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 48*x^4 + 387*x^5 + 4043*x^6 +...
where
A(x) = 1 + x/(1-x) + x^2/((1-2*1*x)*(1-2*2*x)) + x^3/((1-3*1*x)*(1-3*2*x)*(1-3*3*x)) + x^4/((1-4*1*x)*(1-4*2*x)*(1-4*3*x)*(1-4*4*x)) +...
Exponential Generating Function.
E.g.f.: E(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 48*x^4/4! + 387*x^5/5! +...
where
E(x) = 1 + (exp(x)-1) + (exp(2*x)-1)^2/(2!*2^2) + (exp(3*x)-1)^3/(3!*3^3) + (exp(4*x)-1)^4/(4!*4^4) + (exp(5*x)-1)^5/(5!*5^5) +...
-
Flatten[{1,Table[Sum[k^(n-k) * StirlingS2[n, k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
-
{a(n)=polcoeff(sum(m=0,n,x^m/prod(k=1,m,1-m*k*x +x*O(x^n))),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=n!*polcoeff(sum(m=0,n,(exp(m*x+x*O(x^n))-1)^m/(m!*m^m)),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=sum(k=0, n, k^(n-k) * stirling(n, k, 2))}
for(n=0,30,print1(a(n),", "))
A320096
a(n) = Sum_{k=1..n} (-1)^(n-k) * Stirling1(n,k) * k! * k^n, with a(0)=1.
Original entry on oeis.org
1, 1, 9, 212, 9418, 675014, 71092502, 10334690232, 1982433606264, 485065343565072, 147433546709109408, 54493722609862927632, 24069397682825072219040, 12520250948941157091235344, 7575515622713954399390221008, 5275250174853125498317783254528
Offset: 0
-
Flatten[{1, Table[Sum[(-1)^(n-k)*StirlingS1[n, k]*k!*k^n, {k, 1, n}], {n, 1, 20}]}]
nmax = 20; CoefficientList[Series[1 + Sum[(-Log[1 - k*x])^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 04 2022 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*k!*k^n*stirling(n, k, 1)); \\ Seiichi Manyama, Feb 02 2022
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-log(1-k*x))^k))) \\ Seiichi Manyama, Feb 02 2022
A204064
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + n*x) / (1 + k*x + n*x^2).
Original entry on oeis.org
1, 1, 2, 5, 14, 44, 152, 572, 2324, 10124, 47012, 231572, 1204964, 6599444, 37924292, 228033332, 1431128804, 9354072404, 63548071172, 447923400692, 3270361265444, 24696229801364, 192625876675652, 1549890430643252, 12849460733123684, 109647468132256724
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 44*x^5 + 152*x^6 + 572*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(1+2*x)*(2+2*x)/((1+x+2*x^2)*(1+2*x+2*x^2)) + x^3*(1+3*x)*(2+3*x)*(3+3*x)/((1+x+3*x^2)*(1+2*x+3*x^2)*(1+3*x+3*x^2)) + x^4*(1+4*x)*(2+4*x)*(3+4*x)*(4+4*x)/((1+x+4*x^2)*(1+2*x+4*x^2)*(1+3*x+4*x^2)*(1+4*x+4*x^2)) +...
Also, we have the identity (cf. A229046):
A(x) = 1/2 + (1/2)*(1+x)/(1+x) + (2!/2)*x*(1+x)^2/((1+x)*(1+2*x)) + (3!/2)*x^2*(1+x)^3/((1+x)*(1+2*x)*(1+3*x)) + (4!/2)*x^3*(1+x)^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + (5!/2)*x^4*(1+x)^5/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)) +...
-
b:= proc(n, k) option remember; `if`(n<1, 1, `if`(k>
ceil(n/2), 0, add((k-j)*b(n-1-j, k-j), j=0..1)))
end:
a:= n-> ceil(add(b(n+2, k), k=1..1+ceil(n/2))/2):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 26 2018
-
b[n_, k_] := b[n, k] = If[n < 1, 1, If[k > Ceiling[n/2], 0, Sum[(k - j) b[n - 1 - j, k - j], {j, 0, 1}]]];
a[n_] := Ceiling[Sum[b[n + 2, k], {k, 1, 1 + Ceiling[n/2]}]/2];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)
-
{a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1,m,(k+m*x)/(1+k*x+m*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff( 1/2 + sum(m=1, n+1, m!/2*x^(m-1)*(1+x)^m/prod(k=1, m, 1+k*x +x*O(x^n))), n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=if(n<0,0,if(n<1,1,(1/2)*sum(k=0, floor((n+1)/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k+1)))))} \\ Paul D. Hanna, Jul 13 2014
for(n=0, 30, print1(a(n), ", "))
Showing 1-10 of 33 results.
Comments