cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A229046 G.f.: Sum_{n>=0} n! * x^n * (1+x)^n / Product_{k=1..n} (1 + k*x).

Original entry on oeis.org

1, 1, 2, 4, 10, 28, 88, 304, 1144, 4648, 20248, 94024, 463144, 2409928, 13198888, 75848584, 456066664, 2862257608, 18708144808, 127096142344, 895846801384, 6540722530888, 49392459602728, 385251753351304, 3099780861286504, 25698921466247368, 219294936264513448
Offset: 0

Views

Author

Paul D. Hanna, Oct 27 2013

Keywords

Comments

a(n-1) is the number of set partitions of [n] such that the absolute difference between least elements of consecutive blocks is always > 1. a(4) = 10: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 124|3|5, 125|34, 12|345, 12|34|5. - Alois P. Heinz, May 22 2017
Conjecturally, the number of sequences (e(1), ..., e(n)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) = e(k). [Martinez and Savage, 2.13] - Eric M. Schmidt, Jul 17 2017

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 28*x^5 + 88*x^6 + 304*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x) + 2!*x^2*(1+x)^2/((1+x)*(1+2*x)) + 3!*x^3*(1+x)^3/((1+x)*(1+2*x)*(1+3*x)) + 4!*x^4*(1+x)^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + 5!*x^5*(1+x)^5/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)) +...
Also, we have the identity (cf. A204064):
A(x) = 1 + x + 2*x^2*(1+x)/(1+x+x^2) + 2*x^3*(1+2*x)*(2+2*x)/((1+x+2*x^2)*(1+2*x+2*x^2)) + 2*x^4*(1+3*x)*(2+3*x)*(3+3*x)/((1+x+3*x^2)*(1+2*x+3*x^2)*(1+3*x+3*x^2)) + 2*x^5*(1+4*x)*(2+4*x)*(3+4*x)*(4+4*x)/((1+x+4*x^2)*(1+2*x+4*x^2)*(1+3*x+4*x^2)*(1+4*x+4*x^2)) +...
Also, by Peter Bala's o.g.f.:
A(x) = 1/((1+x)*(1-x)) + x/((1+x)^2*(1-2*x)) + x^2/((1+x)^3*(1-3*x))+ x^3/((1+x)^4*(1-4*x))+ x^4/((1+x)^5*(1-5*x)) + x^5/((1+x)^6*(1-6*x)) +...
		

Crossrefs

Programs

  • Maple
    a:= n-> add(k!*Stirling2(n-k+1,k+1), k=0..floor(n/2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 24 2018
  • Mathematica
    a[n_] := Sum[k!*StirlingS2[n-k+1, k+1], {k, 0, n/2}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 25 2018, after Alois P. Heinz *)
  • PARI
    a(n)=polcoeff( sum(m=0, n, m!*x^m*(1+x)^m/prod(k=1, m, 1+k*x +x*O(x^n))), n)
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    a(n)=polcoeff( 1-x + 2*x*sum(m=0, n, x^m*prod(k=1, m, (k+m*x)/(1+k*x+m*x^2 +x*O(x^n))) ), n)
    for(n=0,30,print1(a(n), ", "))
    
  • PARI
    /* After Peter Bala: Sum_{n>=0} x^n/((1+x)^(n+1)*(1 - (n+1)*x)) */
    {a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - (m+1)*x) +x*O(x^n))), n)} \\ Paul D. Hanna, Jul 13 2014
    for(n=0,30,print1(a(n), ", "))
    
  • PARI
    a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k,i)*(k-i+1)^(n-k)))
    for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Jul 13 2014

Formula

G.f.: 1+x + Sum_{n>=1} 2*x^(n+1) * Product_{k=1..n} (k + n*x)/(1 + k*x + n*x^2).
From Peter Bala, Jul 09 2014: (Start)
An alternative form of the o.g.f. appears to be the formal series A(x) = 1/(1 + x) * Sum_{n >= 0} 1/(1 - (n+1)*x)*(x/(1 + x))^n (checked up to a(26)). Cf. A105795.
Setting y = x/(1 + x) produces A(y) = (1 - y)^2*( Sum_{n >= 0} y^n/(1 - (n + 2)*y) ) = 1 + y + 3*y^2 + 9*y^3 + ..., the generating function for A112532. (End)
a(n) = 2*A204064(n-1) for n>1.
a(n) = Sum_{k=0..floor(n/2)} Sum_{i=0..k} (-1)^i * binomial(k,i) * (k-i+1)^(n-k). (See Paul Barry's formula in A105795). - Paul D. Hanna, Jul 13 2014
From Alois P. Heinz, Jan 24 2018: (Start)
a(n) = Sum_{k=0..floor(n/2)} k! * Stirling2(n-k+1,k+1).
a(n) = Sum_{k=1..ceiling((n+1)/2)} A298668(n+1,k). (End)

A187741 G.f.: Sum_{n>=0} (1 + n*x)^n * x^n / (1 + x + n*x^2)^n.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 24, 60, 120, 360, 720, 2520, 5040, 20160, 40320, 181440, 362880, 1814400, 3628800, 19958400, 39916800, 239500800, 479001600, 3113510400, 6227020800, 43589145600, 87178291200, 653837184000, 1307674368000, 10461394944000, 20922789888000
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2013

Keywords

Comments

This is an enumeration of the disjoint union (with repetition) of A001710(n), for n > 0, and A000142(n), for n > 0. The first lists the orders of the alternating groups; the second lists the orders of the symmetric groups. - Hal M. Switkay, Mar 13 2023

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 12*x^6 + 24*x^7 + 60*x^8 +...
where
A(x) = 1 + (1+x)*x/(1+x+x^2) + (1+2*x)^2*x^2/(1+x+2*x^2)^2 + (1+3*x)^3*x^3/(1+x+3*x^2)^3 + (1+4*x)^4*x^4/(1+x+4*x^2)^4 + (1+5*x)^5*x^5/(1+x+5*x^2)^5 +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[OddQ[n], ((n + 1)/2)!, (n/2 + 1)!/2]; a[0] = 1; Array[a, 32, 0] (* Amiram Eldar, Dec 11 2022 *)
  • PARI
    {a(n)=polcoeff( sum(m=0, n, (x+m*x^2)^m / (1 + x+m*x^2 +x*O(x^n))^m), n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    {a(n)=if(n==0,1, if(n%2==0, ((n+2)/2)!/2, ((n+1)/2)! ))}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: 1/2 + (1+2*x) * Sum_{n>=0} (n+1)!*x^(2*n)/2.
a(2*n) = (n+1)!/2, a(2*n-1) = n!, for n>0 with a(0)=1.
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 3*e - 4.
Sum_{n>=0} (-1)^n/a(n) = e - 2. (End)

A208237 G.f.: Sum_{n>=0} n! * x^n * Product_{k=1..n} (1 + k*x) / (1 + k*x + k^2*x^2).

Original entry on oeis.org

1, 1, 2, 5, 15, 54, 223, 1045, 5474, 31685, 200895, 1384470, 10304431, 82376101, 703949762, 6403761365, 61784985615, 630180031734, 6775001385343, 76572619018165, 907658144193314, 11259399965148005, 145879271404693215, 1970471655222795990, 27702625497930064591
Offset: 0

Views

Author

Paul D. Hanna, Jan 11 2013

Keywords

Comments

Compare to the identity:
Sum_{n>=0} n! * x^n * Product_{k=1..n} (1 + x) / (1 + k*x + k*x^2) = 1/(1-x-x^2).
Compare also to the g.f. of A136127:
x*Sum_{n>=0} n! * x^n * Product_{k=1..n} (2 + k*x) / (1 + 2*k*x + k^2*x^2).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 54*x^5 + 223*x^6 + 1045*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + 2!*x^2*(1+x)*(1+2*x)/((1+x+x^2)*(1+2*x+4*x^2)) + 3!*x^3*(1+x)*(1+2*x)*(1+3*x)/((1+x+x^2)*(1+2*x+4*x^2)*(1+3*x+9*x^2)) + 4!*x^4*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)/((1+x+x^2)*(1+2*x+4*x^2)*(1+3*x+9*x^2)*(1+4*x+16*x^2)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff( sum(m=0, n, m!*x^m*prod(k=1, m, (1+k*x)/(1+k*x+k^2*x^2 +x*O(x^n))) ), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) ~ 2 * 3^(n/2 + 5/4) * n^(n+2) / (exp(n) * Pi^(n+3/2)). - Vaclav Kotesovec, Nov 02 2014

A204066 G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (n + k*x) / (1 + n*x + k*x^2).

Original entry on oeis.org

1, 1, 4, 16, 82, 502, 3574, 29002, 264166, 2668666, 29612014, 358025986, 4684916902, 65966957722, 994546450174, 15984888286642, 272845934899606, 4929166716321706, 93963635086523374, 1884915966747571906, 39691711412770983622, 875410001054417122042, 20180907494704416823774
Offset: 0

Views

Author

Paul D. Hanna, Jan 09 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 82*x^4 + 502*x^5 + 3574*x^6 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(2+x)*(2+2*x)/((1+2*x+x^2)*(1+2*x+2*x^2)) + x^3*(3+x)*(3+2*x)*(3+3*x)/((1+3*x+x^2)*(1+3*x+2*x^2)*(1+3*x+3*x^2)) + x^4*(4+x)*(4+2*x)*(4+3*x)*(4+4*x)/((1+4*x+x^2)*(1+4*x+2*x^2)*(1+4*x+3*x^2)*(1+4*x+4*x^2)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1, m, (m+k*x)/(1+m*x+k*x^2 +x*O(x^n))) ), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) ~ exp(1/2) * n! * n/2. - Vaclav Kotesovec, Nov 02 2014

A208236 G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1 + n*k*x) / (1 + x + n*k*x^2).

Original entry on oeis.org

1, 1, 1, 4, 10, 50, 208, 1290, 7456, 55982, 411796, 3650514, 32484460, 332970374, 3468625588, 40420787250, 481757564956, 6295577910182, 84407459209876, 1223095585594674, 18208380720893980, 289843786627539014, 4741844351895315028, 82269590167564595250
Offset: 0

Views

Author

Paul D. Hanna, Jan 10 2013

Keywords

Comments

Compare to the identity:
Sum_{n>=0} x^n * Product_{k=1..n} (1 + t*k*x) / (1 + x + t*k*x^2) = (1+x)/(1-t*x^2).
Compare to the g.f. of A187741:
Sum_{n>=0} x^n * (1 + n*x)^n / (1 + x + n*x^2)^n = 1/2 + (1+2*x)*Sum_{n>=0} (n+1)!*x^(2*n)/2.
Limit n->infinity (a(n)/n!)^(1/n) = 1/(2*log(2)). - Vaclav Kotesovec, Nov 03 2014

Examples

			G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 10*x^4 + 50*x^5 + 208*x^6 + 1290*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(1+2*1*x)*(1+2*2*x)/((1+x+2*1*x^2)*(1+x+2*2*x^2)) + x^3*(1+3*1*x)*(1+3*2*x)*(1+3*3*x)/((1+x+3*1*x^2)*(1+x+3*2*x^2)*(1+x+3*3*x^2)) + x^4*(1+4*1*x)*(1+4*2*x)*(1+4*3*x)*(1+4*4*x)/((1+x+4*1*x^2)*(1+x+4*2*x^2)*(1+x+4*3*x^2)*(1+x+4*4*x^2)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1, m, (1+m*k*x)/(1+x+m*k*x^2 +x*O(x^n))) ), n)}
    for(n=0, 30, print1(a(n), ", "))

A231291 G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1 + k*x) / (1 - x - k*x^2).

Original entry on oeis.org

1, 1, 3, 9, 29, 99, 355, 1333, 5213, 21163, 88899, 385413, 1720637, 7894827, 37166563, 179254501, 884548253, 4460597131, 22962705027, 120557527941, 644952640253, 3512995320939, 19468234666531, 109694091843109, 628027149163613, 3651429293510731, 21547912967252163
Offset: 0

Views

Author

Paul D. Hanna, Nov 06 2013

Keywords

Comments

Compare to the identity:
Sum_{n>=0} x^n * Product_{k=1..n} (1 + k*x)/(1 + x + k*x^2) = 1/(1-x).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 29*x^4 + 99*x^5 + 355*x^6 + 1333*x^7 +...
where
A(x) = 1 + x*(1+x)/(1-x-x^2) + x^2*(1+x)*(1+2*x)/((1-x-x^2)*(1-x-2*x^2)) + x^3*(1+x)*(1+2*x)*(1+3*x)/((1-x-x^2)*(1-x-2*x^2)*(1-x-3*x^2)) + x^4*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)/((1-x-x^2)*(1-x-2*x^2)*(1-x-3*x^2)*(1-x-4*x^2)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1, m, (1+k*x)/(1-x-k*x^2 +x*O(x^n))) ), n)}
    for(n=0, 30, print1(a(n), ", "))

A227851 G.f.: Sum_{n>=1} n^n * x^n * Product_{k=1..n} (k + x) / (1 + n*k*x + n*x^2).

Original entry on oeis.org

1, 1, 8, 125, 3650, 171440, 11815940, 1122759980, 140645621840, 22456283261240, 4451225265169640, 1072410309912462440, 308628265617560695880, 104567048162852196877640, 41198829781936190483346440, 18676924223093561435394148040, 9652952812685808726911849225480
Offset: 0

Views

Author

Paul D. Hanna, Oct 31 2013

Keywords

Comments

Compare to the identity:
Sum_{n>=0} x^n * Product_{k=1..n} (k + x) / (1 + k*x + x^2) = (1+x^2)/(1-x).

Examples

			G.f.: A(x) = 1 + x + 8*x^2 + 125*x^3 + 3650*x^4 + 171440*x^5 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + 2^2*x^2*(1+x)*(2+x)/((1+2*x+2*x^2)*(1+4*x+2*x^2)) + 3^3*x^3*(1+x)*(2+x)*(3+x)/((1+3*x+3*x^2)*(1+6*x+3*x^2)*(1+9*x+3*x^2)) + 4^4*x^4*(1+x)*(2+x)*(3+x)*(4+x)/((1+4*x+4*x^2)*(1+8*x+4*x^2)*(1+12*x+4*x^2)*(1+16*x+4*x^2)) +...
		

Crossrefs

Cf. A204064.

Programs

  • PARI
    {a(n)=polcoeff( sum(m=0, n, m^m*x^m*prod(k=1, m, (k+x)/(1+m*k*x+m*x^2 +x*O(x^n))) ), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) == 2 (mod 3) for n>1.
a(n) == 0 (mod 5) for n>2.
a(n) == 0 (mod 8) for n>7.
a(n) ~ sqrt(Pi) * n^(2*n+1/2) / (sqrt(1-log(2)) * exp(2*n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, Nov 03 2014

A363110 G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + (n-k+1)*x) / (1 + k*x + (n-k+1)*x^2).

Original entry on oeis.org

1, 1, 2, 4, 10, 28, 88, 306, 1158, 4730, 20722, 96776, 479340, 2507510, 13804014, 79718782, 481614806, 3036358968, 19932689952, 135981543762, 962319171782, 7053068549250, 53458038451082, 418440466421960, 3378290373259300, 28099682071640734, 240537280709926718
Offset: 0

Views

Author

Paul D. Hanna, Jun 02 2023

Keywords

Comments

Compare to the following identities, which hold for any fixed b and c:
(1) Sum_{n>=0} x^n * Product_{k=1..n} (b + k*x)/(1 + b*x + k*x^2) = (1 + b*x)/(1 - x^2).
(2) Sum_{n>=0} x^n * Product_{k=1..n} (k + c*x)/(1 + k*x + c*x^2) = (1 + c*x^2)/(1 - x).
(3) Sum_{n>=0} x^n * Product_{k=1..n} (b*k + c*k*x)/(1 + b*k*x + c*k*x^2) = 1/(1 - b*x - c*x^2).
Conjectures:
(1) a(6*n + k) == 0 (mod 4) for n > 0 when k = {0,5},
(2) a(6*n + k) == 2 (mod 4) for n > 0 when k = {1,2,3,4}.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 28*x^5 + 88*x^6 + 306*x^7 + 1158*x^8 + 4730*x^9 + 20722*x^10 + 96776*x^11 + 479340*x^12 + ...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(1 + 2*x)*(2 + x)/((1 + x + 2*x^2)*(1 + 2*x + x^2)) + x^3*(1 + 3*x)*(2 + 2*x)*(3 + x)/((1 + x + 3*x^2)*(1 + 2*x + 2*x^2)*(1 + 3*x + x^2)) + x^4*(1 + 4*x)*(2 + 3*x)*(3 + 2*x)*(4 + x)/((1 + x + 4*x^2)*(1 + 2*x + 3*x^2)*(1 + 3*x + 2*x^2)*(1 + 4*x + x^2)) + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff( A = sum(m=0, n, x^m*prod(k=1, m, (k + (m-k+1)*x)/(1 + k*x + (m-k+1)*x^2 +x*O(x^n))) ), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be described by the following.
(1) Sum_{n>=0} x^n * Product_{k=1..n} (k + (n-k+1)*x) / (1 + k*x + (n-k+1)*x^2).
(2) Sum_{n>=0} x^n * (Sum_{k=0..n} A067948(n,k) * x^k) / Product_{k=1..n} (1 + k*x + (n-k+1)*x^2).
Showing 1-8 of 8 results.