A229046
G.f.: Sum_{n>=0} n! * x^n * (1+x)^n / Product_{k=1..n} (1 + k*x).
Original entry on oeis.org
1, 1, 2, 4, 10, 28, 88, 304, 1144, 4648, 20248, 94024, 463144, 2409928, 13198888, 75848584, 456066664, 2862257608, 18708144808, 127096142344, 895846801384, 6540722530888, 49392459602728, 385251753351304, 3099780861286504, 25698921466247368, 219294936264513448
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 28*x^5 + 88*x^6 + 304*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x) + 2!*x^2*(1+x)^2/((1+x)*(1+2*x)) + 3!*x^3*(1+x)^3/((1+x)*(1+2*x)*(1+3*x)) + 4!*x^4*(1+x)^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + 5!*x^5*(1+x)^5/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)) +...
Also, we have the identity (cf. A204064):
A(x) = 1 + x + 2*x^2*(1+x)/(1+x+x^2) + 2*x^3*(1+2*x)*(2+2*x)/((1+x+2*x^2)*(1+2*x+2*x^2)) + 2*x^4*(1+3*x)*(2+3*x)*(3+3*x)/((1+x+3*x^2)*(1+2*x+3*x^2)*(1+3*x+3*x^2)) + 2*x^5*(1+4*x)*(2+4*x)*(3+4*x)*(4+4*x)/((1+x+4*x^2)*(1+2*x+4*x^2)*(1+3*x+4*x^2)*(1+4*x+4*x^2)) +...
Also, by Peter Bala's o.g.f.:
A(x) = 1/((1+x)*(1-x)) + x/((1+x)^2*(1-2*x)) + x^2/((1+x)^3*(1-3*x))+ x^3/((1+x)^4*(1-4*x))+ x^4/((1+x)^5*(1-5*x)) + x^5/((1+x)^6*(1-6*x)) +...
-
a:= n-> add(k!*Stirling2(n-k+1,k+1), k=0..floor(n/2)):
seq(a(n), n=0..30); # Alois P. Heinz, Jan 24 2018
-
a[n_] := Sum[k!*StirlingS2[n-k+1, k+1], {k, 0, n/2}];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 25 2018, after Alois P. Heinz *)
-
a(n)=polcoeff( sum(m=0, n, m!*x^m*(1+x)^m/prod(k=1, m, 1+k*x +x*O(x^n))), n)
for(n=0,30,print1(a(n),", "))
-
a(n)=polcoeff( 1-x + 2*x*sum(m=0, n, x^m*prod(k=1, m, (k+m*x)/(1+k*x+m*x^2 +x*O(x^n))) ), n)
for(n=0,30,print1(a(n), ", "))
-
/* After Peter Bala: Sum_{n>=0} x^n/((1+x)^(n+1)*(1 - (n+1)*x)) */
{a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - (m+1)*x) +x*O(x^n))), n)} \\ Paul D. Hanna, Jul 13 2014
for(n=0,30,print1(a(n), ", "))
-
a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k,i)*(k-i+1)^(n-k)))
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Jul 13 2014
A187741
G.f.: Sum_{n>=0} (1 + n*x)^n * x^n / (1 + x + n*x^2)^n.
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 12, 24, 60, 120, 360, 720, 2520, 5040, 20160, 40320, 181440, 362880, 1814400, 3628800, 19958400, 39916800, 239500800, 479001600, 3113510400, 6227020800, 43589145600, 87178291200, 653837184000, 1307674368000, 10461394944000, 20922789888000
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 12*x^6 + 24*x^7 + 60*x^8 +...
where
A(x) = 1 + (1+x)*x/(1+x+x^2) + (1+2*x)^2*x^2/(1+x+2*x^2)^2 + (1+3*x)^3*x^3/(1+x+3*x^2)^3 + (1+4*x)^4*x^4/(1+x+4*x^2)^4 + (1+5*x)^5*x^5/(1+x+5*x^2)^5 +...
-
a[n_] := If[OddQ[n], ((n + 1)/2)!, (n/2 + 1)!/2]; a[0] = 1; Array[a, 32, 0] (* Amiram Eldar, Dec 11 2022 *)
-
{a(n)=polcoeff( sum(m=0, n, (x+m*x^2)^m / (1 + x+m*x^2 +x*O(x^n))^m), n)}
for(n=0, 40, print1(a(n), ", "))
-
{a(n)=if(n==0,1, if(n%2==0, ((n+2)/2)!/2, ((n+1)/2)! ))}
for(n=0, 30, print1(a(n), ", "))
A208237
G.f.: Sum_{n>=0} n! * x^n * Product_{k=1..n} (1 + k*x) / (1 + k*x + k^2*x^2).
Original entry on oeis.org
1, 1, 2, 5, 15, 54, 223, 1045, 5474, 31685, 200895, 1384470, 10304431, 82376101, 703949762, 6403761365, 61784985615, 630180031734, 6775001385343, 76572619018165, 907658144193314, 11259399965148005, 145879271404693215, 1970471655222795990, 27702625497930064591
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 54*x^5 + 223*x^6 + 1045*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + 2!*x^2*(1+x)*(1+2*x)/((1+x+x^2)*(1+2*x+4*x^2)) + 3!*x^3*(1+x)*(1+2*x)*(1+3*x)/((1+x+x^2)*(1+2*x+4*x^2)*(1+3*x+9*x^2)) + 4!*x^4*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)/((1+x+x^2)*(1+2*x+4*x^2)*(1+3*x+9*x^2)*(1+4*x+16*x^2)) +...
-
{a(n)=polcoeff( sum(m=0, n, m!*x^m*prod(k=1, m, (1+k*x)/(1+k*x+k^2*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
A204066
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (n + k*x) / (1 + n*x + k*x^2).
Original entry on oeis.org
1, 1, 4, 16, 82, 502, 3574, 29002, 264166, 2668666, 29612014, 358025986, 4684916902, 65966957722, 994546450174, 15984888286642, 272845934899606, 4929166716321706, 93963635086523374, 1884915966747571906, 39691711412770983622, 875410001054417122042, 20180907494704416823774
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 82*x^4 + 502*x^5 + 3574*x^6 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(2+x)*(2+2*x)/((1+2*x+x^2)*(1+2*x+2*x^2)) + x^3*(3+x)*(3+2*x)*(3+3*x)/((1+3*x+x^2)*(1+3*x+2*x^2)*(1+3*x+3*x^2)) + x^4*(4+x)*(4+2*x)*(4+3*x)*(4+4*x)/((1+4*x+x^2)*(1+4*x+2*x^2)*(1+4*x+3*x^2)*(1+4*x+4*x^2)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1, m, (m+k*x)/(1+m*x+k*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
A208236
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1 + n*k*x) / (1 + x + n*k*x^2).
Original entry on oeis.org
1, 1, 1, 4, 10, 50, 208, 1290, 7456, 55982, 411796, 3650514, 32484460, 332970374, 3468625588, 40420787250, 481757564956, 6295577910182, 84407459209876, 1223095585594674, 18208380720893980, 289843786627539014, 4741844351895315028, 82269590167564595250
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 10*x^4 + 50*x^5 + 208*x^6 + 1290*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(1+2*1*x)*(1+2*2*x)/((1+x+2*1*x^2)*(1+x+2*2*x^2)) + x^3*(1+3*1*x)*(1+3*2*x)*(1+3*3*x)/((1+x+3*1*x^2)*(1+x+3*2*x^2)*(1+x+3*3*x^2)) + x^4*(1+4*1*x)*(1+4*2*x)*(1+4*3*x)*(1+4*4*x)/((1+x+4*1*x^2)*(1+x+4*2*x^2)*(1+x+4*3*x^2)*(1+x+4*4*x^2)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1, m, (1+m*k*x)/(1+x+m*k*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
A231291
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1 + k*x) / (1 - x - k*x^2).
Original entry on oeis.org
1, 1, 3, 9, 29, 99, 355, 1333, 5213, 21163, 88899, 385413, 1720637, 7894827, 37166563, 179254501, 884548253, 4460597131, 22962705027, 120557527941, 644952640253, 3512995320939, 19468234666531, 109694091843109, 628027149163613, 3651429293510731, 21547912967252163
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 29*x^4 + 99*x^5 + 355*x^6 + 1333*x^7 +...
where
A(x) = 1 + x*(1+x)/(1-x-x^2) + x^2*(1+x)*(1+2*x)/((1-x-x^2)*(1-x-2*x^2)) + x^3*(1+x)*(1+2*x)*(1+3*x)/((1-x-x^2)*(1-x-2*x^2)*(1-x-3*x^2)) + x^4*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)/((1-x-x^2)*(1-x-2*x^2)*(1-x-3*x^2)*(1-x-4*x^2)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1, m, (1+k*x)/(1-x-k*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
A227851
G.f.: Sum_{n>=1} n^n * x^n * Product_{k=1..n} (k + x) / (1 + n*k*x + n*x^2).
Original entry on oeis.org
1, 1, 8, 125, 3650, 171440, 11815940, 1122759980, 140645621840, 22456283261240, 4451225265169640, 1072410309912462440, 308628265617560695880, 104567048162852196877640, 41198829781936190483346440, 18676924223093561435394148040, 9652952812685808726911849225480
Offset: 0
G.f.: A(x) = 1 + x + 8*x^2 + 125*x^3 + 3650*x^4 + 171440*x^5 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + 2^2*x^2*(1+x)*(2+x)/((1+2*x+2*x^2)*(1+4*x+2*x^2)) + 3^3*x^3*(1+x)*(2+x)*(3+x)/((1+3*x+3*x^2)*(1+6*x+3*x^2)*(1+9*x+3*x^2)) + 4^4*x^4*(1+x)*(2+x)*(3+x)*(4+x)/((1+4*x+4*x^2)*(1+8*x+4*x^2)*(1+12*x+4*x^2)*(1+16*x+4*x^2)) +...
-
{a(n)=polcoeff( sum(m=0, n, m^m*x^m*prod(k=1, m, (k+x)/(1+m*k*x+m*x^2 +x*O(x^n))) ), n)}
for(n=0, 20, print1(a(n), ", "))
A363110
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + (n-k+1)*x) / (1 + k*x + (n-k+1)*x^2).
Original entry on oeis.org
1, 1, 2, 4, 10, 28, 88, 306, 1158, 4730, 20722, 96776, 479340, 2507510, 13804014, 79718782, 481614806, 3036358968, 19932689952, 135981543762, 962319171782, 7053068549250, 53458038451082, 418440466421960, 3378290373259300, 28099682071640734, 240537280709926718
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 28*x^5 + 88*x^6 + 306*x^7 + 1158*x^8 + 4730*x^9 + 20722*x^10 + 96776*x^11 + 479340*x^12 + ...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(1 + 2*x)*(2 + x)/((1 + x + 2*x^2)*(1 + 2*x + x^2)) + x^3*(1 + 3*x)*(2 + 2*x)*(3 + x)/((1 + x + 3*x^2)*(1 + 2*x + 2*x^2)*(1 + 3*x + x^2)) + x^4*(1 + 4*x)*(2 + 3*x)*(3 + 2*x)*(4 + x)/((1 + x + 4*x^2)*(1 + 2*x + 3*x^2)*(1 + 3*x + 2*x^2)*(1 + 4*x + x^2)) + ...
-
{a(n) = polcoeff( A = sum(m=0, n, x^m*prod(k=1, m, (k + (m-k+1)*x)/(1 + k*x + (m-k+1)*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-8 of 8 results.
Comments